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Research in unmanned aerial vehicles (UAVs) has grown in interest over the past couple
decades. Historically, UAVs were designed to maximize endurance and range, but demands
for UAV designs have changed in recent years. In addition to the traditional demands for
endurance and range, today customer demands include maneuverability. Therefore, UAVs
are being designed to morph, to change their geometrical shape during flight, for enhanced
maneuvering capability. In this investigation the morphing UAV concept under study is
referred to as the buckle wing. The design of the buckle-wing airfoil geometries is posed as a
multilevel, multiobjective optimization problem. This buckle-wing design problem includes
two competing objectives of maneuverability and long range/endurance. Multiobjective
problems have many optimal solutions each depicting a different compromise scenario.
Each optimal solution is a Pareto point, and the set of all these points represents the
Pareto curve. This is a powerful means of showing the global picture of the solution field.
The goal of this paper is to explore and compare the Pareto curves of the buckle-wing
UAV to that of a conventional non-morphing UAV. In order to make this performance
comparison, Compromise Programming is used as the optimizing method, and the Vortex-
Panel Method is used in calculating the aerodynamics. The buckle-wing UAV’s enhanced
capabilities are demonstrated both quantitatively and graphically.

Nomenclature

α Angle of attack
cd Drag coefficient
cl Lift coefficient
Ma Mach Number
ReL Reynolds Number
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I. Introduction

A. Morphing UAV Background

Research in unmanned aerial vehicles (UAVs) has grown over the past couple of decades. Interest in UAVs
is growing in interest because of the dangerous missions they can accomplish without the risk of human life.
In particular, UAVs are of great interest to the U.S. Air Force, and funding from the Air Force makes the
research of this project possible. UAV missions include video and IR surveillance, relay communication links,
and detection of biological, chemical, or nuclear materials. These missions are autonomously controlled or
piloted by remote control.

Demands for UAVs have changed in recent years. Historically, UAVs were designed to maximize en-
durance and range. In addition to customer needs for endurance and range, today’s customer also demands
maneuverability. This is especially important if the UAV encounters any resistance during the mission. A
typical mission for the newer multi-role UAV includes takeoff, cruising to the desired location as efficiently as
possible, maneuvering to escape problematic encounters, cruising back, and landing. During takeoff, evasive
maneuvers, and landing, high lift is required and less emphasis is put on vehicle drag. For cruising however,
maximizing range and endurance are desired making the lift-to-drag ratio important. The capability of ob-
taining maneuverability and obtaining endurance and range in the same design presents a problem because
of the inherent tradeoff between the two.

Whereas the conventional UAV maximizes endurance and range, the UAV considered in this investigation
is being designed to morph for an enhanced capability for maneuverability. The UAV is designed to morph;
that is, it is designed to change geometrical shape during flight. This project investigates the unique buckle-
wing UAV design project in the Aerospace and Mechanical Engineering Department at Notre Dame.2 Figure
1 depicts a simulated buckle wing in flight.

Programs for morphing aircraft research have been emerging in recent years. DARPA announced its
Morphing Aircraft program in Aviation Week and Space Technology in April 2002.11 NASA also has a large
Aircraft Morphing program.13 A team from Purdue University, supported by NASA, recently generated 35
mission concepts for morphing aircraft.5 Furthermore, the Purdue team presented a remarkable concept
looking at morphing as an independent variable.6 The team’s approach uses aircraft performance, size, and
weight as functions of morphing to size an aircraft. Another interesting area of morphing aircraft research
examines the flying mechanics of birds and apply them as morphing principles on larger air vehicles.1 On
the system level, they examine the effects of variable lift-to-drag ratio and specific fuel consumption of the
vehicle in cruising flight.

Figure 1. Buckle-Wing UAV

The morphing concept of the buckle-wing UAV has the ability to change its wing configuration from a
single wing into two wings joined at each end. The research focus of for this project consists of designing the
buckle-wing UAV’s airfoil cross-sections. The probrem is posed as a single airfoil which splits into two airfoils
when morphed. The first configuration is called fused. It consists of a single airfoil, and its objective is to
optimize endurance and range via lift-to-drag cl/cd. The second configuration is called split, or the buckle
wing, because it consists of that same single fused airfoil now only split into two airfoils. This configuration
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is designed to optimize maneuverability via lift cl.
The buckle wing has many advantages over a conventional UAV design, in that the tradeoff between

maneuvering, and endurance and range can be somewhat decoupled. The buckle-wing concept allows greater
performance of each capability as compared to any single design with competing objectives. However, it also
presents new design challenges. These two competing objectives create a multiobjective problem for the two
wing configurations.

The design problem is formulated as a multiobjective optimization problem consisting of two competing
objectives. Maximizing one objective occurs at the expense of the other, or increasing one objective results
in a decrease in the other. In such cases the designers must make a compromise in order to obtain satis-
factory objective values. A multiobjective optimization problem has many optimal solutions each depicting
a different compromise scenario. Each solution presents a point, and the set of all these points represents
the Pareto curve. The Pareto curve is a powerful graphical tool to show the global tradeoff picture. There
are a number of procedures proposed in research journals and textbooks for generating a compromise point.
The Pareto curves of the buckle-wing UAV and a conventional UAV are generated from the method of
Compromise Programming9 in this investigation.

The goal of this paper is to explore and compare the Pareto curve of the buckle-wing UAV with that of
the conventional UAV in order to quantitatively demonstrate the buckle wing’s enhanced capabilities. The
superiority of the buckle wing will be immediately identifiable.

B. Compromise Programming Background

Goal Programming (GP) is the background for the method used in this research. Based on the works of
Steuer,8 the variation of GP used in this investigation is described in Tappeta9 and otherwise known as
Compromise Programming.

Compromise Programming (CP) is a powerful method of solving multiobjective optimization problems.
CP has the advantage of generating efficient solutions even when the Pareto curve is nonconvex. It is based
on minimization of the distance between a feasible point and an unattainable point called the ideal point.
The feasible point f i is the feasible optima the designer wishes to obtain. It is actually a vector quantity and
also known as the aspiration point. The unattainable, ideal point fu

i is also called the utopian point. This
too is a vector. As its name suggests it contains the unattainable, ideal solution of each objective function.

The CP optimization problem is described as

Minimize z + α
∑m

i=1 wifi(x)
Subject to : z ≥ wi(fi(x) − fu

i ), i = 1, ..., m

gj(x) ≥ 0, j = 1, ..., p

hk(x) = 0, k = 1, ..., q

xub
l ≥ xl ≥ xlb

l , l = 1, ..., n.

(1)

In this standard form of the CP problem, the objective functions F (x) = (f1(x), f2(x), ..., fm(x)) must
be minimized. The weights wi are determined by wi = 1/(f i − fu

i ), and are determined before solving the
CP problem. α is an optimization parameter set to a sufficiently small positive number such as 10−6.

The solution of the CP problem produces a single point. This solution is a Pareto point if it meets the
Pareto optimality condition. A vector of x∗ is Pareto optimal if there exists no feasible vector x which would
decrease some objective function without causing a simultaneous increase in at least one objective function.
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II. Research

A. Compromise Programming Implementation

Because the UAV airfoil design problem seeks to maximize the objective functions, the CP problem formu-
lation for minimization must be changed. Several changes must take place to change the formulation into a
maximizing one. First, maximizing an objective function is analogous to minimizing the objective function’s
negative value. Mathematically, this is stated as

Maximize F (x) = Minimize − F (x).

Additionally, the utopian point fu
i is no longer the ideal minimal point, but it is a maximum ideal point

greater than any value the designer could hope to achieve. Therefore, the weights have to be changed as
well. The weights become wi = 1/(fu

i − f i).
F (x) = f1(x), f2(x). f1 represents the first objective for endurance/range cl/cd, and f2 represents the

second objective for maneuverability cl. Since this is a maximizing problem, the CP formulation is

Minimize z − α
∑m

i=1 wifi(x)
Subject to : z ≥ wi(fu

i (x) − fi), i = 1, ..., m

gj(x) ≥ 0, j = 1, ..., p

hk(x) = 0, k = 1, ..., q

xub
l ≥ xl ≥ xlb

l , l = 1, ..., n

(2)

Choosing a specific set of weights defines the optimization problem. The problem then can be solved for
a solution according to those weights or aspiration values. If an optimal solution is found, and its weights
were chosen properly, the solution represents a Pareto point. All these points, corresponding to the different
weights used in obtaining the optimal solutions, depict the Pareto curve.

Aspiration values should be chosen that are obtainable. The idea is to choose values which are just
beyond the previous solution in order to find the true Pareto point. Choosing aspiration values which are
too low will generate a solution, but generally this will not be a Pareto point. The aspiration targets are
effectively used as weights in CP multiobjective optimization. Aspiration values were chosen such that the
Pareto curve could be generated in the shortest number of trials.

In the conventional UAV design problem generally cl values around 2.0 could be achieved depending upon
the airfoils selected as basis functions (cf. section D). For the buckle-wing problem achievable cl values are
closer to 3.0. In both cases cl/cd values could achieve values of around 150.

The process is very intuitive and important. In order to achieve high values for one of the objectives,
the corresponding aspiration values would need to be set high at the expensive of the other aspiration value.
However, if the other aspiration value is too low, then the problem may converge without generating a Pareto
point. Because computational time is the limiting variable in performing this research, it is really important
to set the aspiration values wisely in order to minimize the number of times necessary to run the code to
generate the Pareto curve.

B. Conventional UAV Airfoil Design Study

The conventional UAV airfoil design study is a single-level, multiobjective problem implemented in two
variations. The first variation makes use of eight design variables representing the weights of the eight
basis functions, and the second variation makes use of only three basis functions. Each also makes use of the
pseudo design variable z. Each optimization problem also loads the data for the spline of each basis function.
In the case consisting of eight design variables, the objective is to determine the three most dominant basis
functions. Then, the second variation is run for the comparison study of the conventional and buckle-wing
Pareto curves. Both variations minimize the objective function
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F = z − α(w1f1 + w2f2), (3)

where z is the pseudo design variable, f1=cl/cd, and f2=cl. Unlike the buckle-wing study, the conven-
tional study involves only a single wing. Hence, cl/cd and cl are the values for this single wing. The lower
bounds of the design variables are 0. The weights of the basis functions are not allowed to be negative to
ensure a valid design. The upper bounds of the design variables are 1.5. This number is chosen to ensure
that the airfoils do not become too thick. These airfoils are appropriate selections for aircrafts such as the
UAV, and allowing them to become much thicker would not be suitable for design. Likewise, another con-
straint guarantees that the sum of the design variables does not exceed 1.5 for the same reason. The other
constraints are the two CP constraints. These constraints tend to drive the optimization process through the
design variable z, which is minimized as part of the objective. The optimizer calls the aerodynamic analysis
code (i.e., the panel method).

The aerodynamic analysis code calculates lift and drag. It is a modified version of Pablo,12 which was
developed in 1999 in Stockholm, Sweden. The aerodynamic analysis code uses a two-dimensional panel
method. It consists of a two-step process. First, lift is calculated. Then, using this result an estimate for
drag is found. This process takes approximately one-half second for a single analysis. A two-dimensional
vortex panel method3 calculates drag sectional lift and the pressure distribution. A boundary-layer model
calculates the drag employing Thwaites’ equations for the laminar region and Head’s equations for turbulent
region.4 The drag coefficient is then computed using the Squire-Young formula.7

C. Buckle-Wing Problem

The buckle-wing problem is a multilevel, multiobjective optimization problem. The problem consists of three
design variables and a fourth pseudo design variable. The upper-level objective function is to minimize

F = z − α(w1f1 + w2f2),

where z is the pseudo design variable, f1 is cl/cdfused or cl/cd in the fused configuration, and f2 is clsplit

or the cl in the buckle-wing (i.e., split) configuration. The same constraints from the conventional problem
are also imposed upon this problem. The upper-level optimizer calls upon the aerodynamic analysis code
to calculate the cl/cdfused, and clfused, and the optimizer calls upon the lower-level optimizer to optimize a
cut and calculate the cl/cdsplit and clsplit.

The lower-level optimizer consists of three design variables representing the control points. The control
points lie upon a cubic spline curve used to cut the fused airfoil. This suboptimization problem additionally
contains three fixed points, which also lie upon the cubic spline curve. They are located at the leading edge,
the trailing edge, and one near the trailing edge to ensure that the split airfoil has a sharp trailing edge.

The suboptimizer produces a cut based on the objective and constraints. The objective is to maximize the
buckle wing’s split configuration cl. The lower bounds are set to ensure that the lower split airfoil contains
at least 30% of the original airfoil. The upper bounds ensure that the upper split airfoil also contains at
least 30% of the original airfoil. Another constraint is added to guarantee that the buckle wing’s cl/cd is
greater than 60. The suboptimizer calls upon a subroutine to make the cut and calls upon the aerodynamic
analysis code to calculate the buckle wing’s cl and cl/cd. This suboptimization process was developed in
Gano.2

This optimization problem has many parameters. It is important to keep in mind that the goal of this
project is to compare the Pareto curves of the buckle-wing UAV to that of a conventional UAV. Therefore,
varying parameters is superfluous to achieving the main goal. Consequently, the Reynolds number ReL,
angle of attack α, and Mach numbers Ma were kept constant and given real values which the UAV would
see in its mission. These values are shown in Table 1. These values correspond to realistic ones experienced
in UAV applications.
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Table 1. Optimization Parameters and Their Values

Parameter Value
ReL 5e5
α 2

Ma 0.3

D. Basis Functions

Basis functions are used to describe the shape of the airfoil. This is a technique given by Vanderplaats.10 An
airfoil is typically represented by a cubic spline and defined by over 100 data points. Because these points are
so numerous, making each of these points a design variable is impractical for computational fluid dynamics
(CFD) or other computational analyses such as panel codes. Therefore, basis functions are used, where
each basis function represents a preexisting airfoil. Each one is given a weight, and each weight represents
a design variable.

Cubic splines are necessary to convert the preexisting airfoil shape into a basis function used in the
optimization problem. The University of Illinois at Urbana-Champaign has an excellent link to an airfoil
database site. This site is http://www.aae.uiuc.edu/m-selig/ads/cood database.html. The airfoils on this
website are described by a set of data points. Each different type of airfoil varies in the number of data points
given and in airfoil orientation. For this research project cubic splines are used to convert the unstandardized,
varying data into a 141 data points with the same orientation. Thus, each airfoil taken from the website is
transformed into a basis function sharing the same number of points and values in x coordinates.

III. Results

A. Conventional UAV Study

A study of the conventional UAV is absolutely necessary. It provides a basis of comparison for the buckle-
wing UAV design. In order to make a true comparison, the same criteria have to be implemented in both
studies. Then, an evaluation can be made quantitatively and graphically to demonstrate the effectiveness of
the buckle-wing UAV design.

The conventional UAV problem is, quite understandably, less complicated than the buckle-wing problem.
The optimization problem for the conventional UAV involves a multiobjective design of a single airfoil. The
conventional UAV problem optimizes both range/endurance and maneuverability for the single wing. In
contrast, the buckle wing involves multilevel, multiobjective optimization. It optimizes the fused airfoil for
its range and endurance performance and the split airfoil for maneuverability. Consequently, the conventional
UAV optimization problem is computationally much less expensive and generating its Pareto curve takes
significantly less time. Hence, the conventional UAV problem was studied first.

The conventional UAV problem contains eight airfoil basis functions. Because the conventional wing
problem is not computationally expensive compared to the buckle wing, it can include more design variables.
Eight sundry airfoils were chosen for the first single-wing optimization problem shown in Figure 2. Basically,
these eight were chosen because they cover a gambit of families of airfoil shapes. The only criterion for
selecting them was that they are designed for small aircraft use. This meant that the airfoils had to be
designed for low Reynolds number, and that they had to be thin airfoils.

Because the buckle-wing problem is computationally more expensive, only three of the eight airfoils could
be used for a Pareto comparison with the buckle-wing problem. Performing the conventional study first also
helped in order to discover which three airfoils should be used as basis functions for the buckle wing. Basis
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Figure 2. Basis Functions b1, b2, ..., b8

function b2 was clearly dominant. All the others played very little role in the optimization process. Still b6

and b8 were selected as dominant over the remaining basis functions.
Because basis function b2 was dominant over all the other bases in the multiobjective studies, a new set

of airfoil basis was required. Before choosing the new basis functions, the next step of this research was to
compare conventional UAV Pareto curve to that of the buckle wing.

B. Buckle-Wing Study

The buckle-wing problem was solved and its Pareto curve established. The three basis functions for this
buckle-wing problem are b2, b6, and b8. The starting point x0 = [0.5 0.5 0.5 1.0]. The utopian point fu=
[5.0 300]. The convergence tolerances = 1e-7.

Figure 3 represents the buckle-wing’s optimized airfoils at the two end points of the Pareto curve. The
left side of the figure shows these airfoils in the fused configuration with their cl/cdfused values. The right
side shows these airfoils in the split configuration with their clsplit values.

Figure 4 shows the conventional and buckle-wing Pareto curves for comparison. The conventional problem
generated Pareto points between (142.8, 1.79) and (155.5, 1.65). The buckle-wing problem generated Pareto
points between (142.8, 2.55) and (156.4, 2.31). A linear interpolating curve was used to generate the two
Pareto curves. The Pareto shift is evident from the two curves. cl values varied from 1.65 to 2.31 in the
conventional problem and they varied from 2.31 to 2.55 in the buckle-wing problem. Note that the buckle
wing is able to obtain the same cl/cd values. The average cl difference was calculated where the two Pareto
domains overlap. The average cl improvement between the two curves is 0.74 or 42.5%.

The optimization problems were not very interesting because most of the design variables (i.e., basis
functions) were zeros. Two of the three airfoils comprising the problems’ basis functions were disappointing.
With the exception of b2 the Eppler 61 airfoil, the basis functions were poor selections for a high cl. Therefore,
research continued with an extended goal to find a more interesting design problem (i.e. nonzero design
variables in the solution) and higher cl results. Further research continued to bolster the project’s success.
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Figure 3. Optimized Buckle-Wing Shapes in Both Configurations

C. Alternate Airfoil Basis Study for Conventional UAV Design

The new goal was to find a better buckle-wing UAV design based on two new criteria. First, the design
should produce higher cl and cl/cd results. Second, the optimization problem should involve all three basis
functions in the optimization process. Each applicable family of airfoils from the website
http://www.aae.uiuc.edu/m-selig/ads/cood database.html was opened and analyzed visually. The family or
series of airfoils, which passed the first visual check of having a thin asymmetric, cambered shape, was then
scrutinized more thoroughly. The next visual checks involved comparing cambers. These visual checks were
based on experience and intuition from the previous results. Finally, eight new airfoils were selected for high
lift. Figure 5 shows these airfoil shapes and names. These eight comprised the alternate airfoil basis design
problem.

Table 2 depicts the criteria used in selecting the most dominant three. Clearly, x3, x7, and x8 were the
most frequently used. The corresponding names of these three dominating airfoils are E-61, GOE804, and
fxmod74. In this study one airfoil did not dominate all eight, but three played important roles in generating
the Pareto curve. In fact, x1 played a minor role as well. These three airfoils provided the basis functions
for the buckle-wing problem and Pareto curve comparison.

Table 2. Nonzero Weights for the Conventional Alternate Study - 8 Bases Optimization Trials

Basis Function x1 x2 x3 x4 x5 x6 x7 x8

Pareto Trials (18) 5 0 15 1 1 1 13 16
Total Trials (37) 11 4 32 6 5 4 26 35

These three airfoils were among the best airfoil shapes for lift. The Eppler 61 is the best of the Eppler
airfoil shapes for lift. Gottingen (EA 8) 804 proved to be the best airfoil basis function from that Gottingen
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Figure 4. Pareto Curves with Bases b2, b6, b8

for lift. Wortmann made modifications to its FX 74-CL5-140 high lift airfoil for even higher lift. Thus, some
of the best designs were achieved.

D. Conventional UAV Study with Three Basis Functions x3, x7, and x8

The Pareto curve for the conventional UAV design was generated using the three dominant bases. Tables 3
and 4 display the complete results for this problem. The Pareto curve of the this problem was established
for comparison. Figure 6a illustrates the two Pareto curves for conventional design using both eight and
three bases. For the most part the two curves are identical; however, the eight-bases case is able to generate
better results in two areas of the curve. This was anticipated from the small contributing role that the other
five basis functions played in the optimization process and basis function x1 in particular.

Using the alternate set of airfoil bases, the Pareto curve is observed to be superior to that of the original
problem shown in Figure 6b. The optimizer was able to achieve the same domain for cl/cd up to a maximum
value at 155.5. Its range for cl well surpasses 1.79. It achieves cl values through 2.15. Furthermore, its cl
surpasses every section where the two curves’ domain overlap.

E. Buckle-Wing Problem with Alternate Bases

The buckle-wing problem using the alternate airfoil bases was solved using the knowledge learned from the
previous problems. The same starting point, bounds, utopian point, and tolerances were used. The optimizer
converged at local minima for nearly half of the trials. Therefore, other starting points were used to find the
global minima for these problematic trials. The complete results are found in the Tables 5, 6, and 7. The
Pareto curve was established and compared to the conventional UAV design.

Figure 6c shows the successful Pareto curve shift. The conventional problem generated Pareto points
between (115.9, 2.15) and (155.5, 1.66). The buckle-wing generated points between (99.9, 3.37) and (154.7,
2.41). Each Pareto curve covered approximately the same cl/cd domain. The curves were constructed using
a linear piecewise fit. The average cl improvement between the two curves was 0.803 or 41.7%.
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Figure 5. Eight New Basis Functions x1, x2,..., x8

Compared to the first buckle-wing trial using the original bases, this buckle-wing Pareto curve was able
to generate significantly larger cl values and a larger gamut for the curve. Figure 6d compares the two
buckle-wing curves. Using alternate bases the buckle-wing Pareto curve produced higher cl values.
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Figure 6. Pareto Curve Comparisons
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Table 3. Conventional Study - 3 Alternate Bases, Starting Point x0=[0.5 0.5 0.5 1.0] Unless Otherwise Specified

f cl cl/cd x1 x2 x3 x4 Pareto Cons
[1.4 150] 1.4713 149.3994 0.5214 0.5303 0.1080 1.0120 no 15
[1.4 160] 1.4044 155.2235 1.1086 0.0190 0.0000 1.1194 no 3,15
[1.4 170] 1.3966 155.1372 1.0851 0.0353 0.0000 1.4954 no 3,15
[1.5 140] 1.7356 149.2438 0.9124 0.4448 0.0676 0.8459 no 15
[1.5 150] 1.4555 149.3478 0.4721 0.4721 0.1070 1.0296 no 14

x0 = [.91 .445 .0676 1]
[1.5 150] 1.6637 155.4560 1.0673 0.2864 0.0179 0.8909 yes 15

fu = [4 300] and x0 = [.91 .445 .0676 1]
[1.5 140] 1.6746 150.9383 0.8859 0.4216 0.0610 0.9316 no 15
[1.5 150] 1.6803 150.7933 0.8743 0.4250 0.0711 0.9947 no 15

fu = [5 400] and x0 = [.91 .445 .0676 1]
[1.5 140] 1.7047 150.0777 0.8837 0.4417 0.0693 0.9709 no none

fu = [6 500] and x0 = [.91 .445 .0676 1]
[1.5 140] 1.5950 147.5961 0.7501 0.4349 0.0954 0.9789 no 14,15

[1.6 140] 1.6768 143.2924 1.1583 0.0000 0.1689 0.9451 no 2,14,15
[1.6 150] 1.4982 149.2095 0.4596 0.6356 0.0957 1.0727 no none
[1.6 160] 1.4232 154.9497 1.1452 0.0000 0.0000 1.1263 yes 2,3,14,15
[1.6 170] 1.3847 154.9758 1.0495 0.0600 0.0000 1.5008 no none

x0 = [1 0.4 0.1 1]
[1.6 150] 1.7115 153.9819 1.0907 0.2708 0.0046 0.9204 yes 14,15

[1.7 140] 1.8182 145.4517 1.3446 0.0000 0.1315 0.9091 yes 2,15
[1.7 150] 1.4724 141.3505 0.4096 0.6098 0.1335 1.1751 no 14
[1.7 160] 1.4161 153.4753 0.7437 0.3168 0.0608 1.2184 no none

x0 = [1.1334 .2730 .0379 1]
[1.7 140] 1.8090 145.0327 1.1885 0.2583 0.0520 0.9161 no 14,15,16
[1.7 150] 1.7470 151.8031 1.1334 0.2730 0.0379 1.0000 yes none

continued next page
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Table 4. Conventional Study - 3 Alternate Bases, continued

f cl cl/cd x1 x2 x3 x4 Pareto Cons

x0 = [1.4775 0 0 1]
[1.7 140] 1.8182 145.4517 1.3446 0.0000 0.1315 0.9091 (used) 2,15
[1.7 150] 1.7440 151.6906 1.1809 0.2585 0.0113 0.9662 no 14,15

[1.9 130] 1.9491 133.1222 0.0000 0.9349 0.5344 0.9554 yes 1,14,15
[1.9 140] 1.8462 137.0174 0.2806 0.7243 0.4082 1.0497 no 15
[1.9 150] 1.8098 145.8147 1.3364 0.0000 0.1316 1.0837 yes none

x0 = [1.3364 0 .1316 1]
[1.9 150] 1.8257 144.6893 1.3483 0.0000 0.1341 1.0354 yes 2,14,15
[1.9 140] 1.8722 138.4813 1.2897 0.0000 0.2103 1.0253 yes 2,14,15,16

[2.0 120] 2.0446 124.1472 0.2480 0.5618 0.6902 0.9554 yes 14,16
[2.0 130] 2.0028 130.1928 0.0004 0.9083 0.5913 0.9972 yes 14,15,16
[2.0 140] 1.9130 134.7814 0.0000 0.9346 0.5091 1.0870 yes 14,15
[2.1 110] 2.1457 115.8915 0.5613 0.0000 0.9387 0.9492 yes 2,10,14,16
[2.1 120] 2.0995 115.0208 0.1737 0.4767 0.8451 1.0006 no NR
[2.1 130] 2.0419 125.4845 0.2267 0.5891 0.6842 1.0645 yes NR
[2.3 110] 2.1457 115.8915 0.5613 0.0000 0.9387 1.2204 x 2,10,14,16
[2.3 120] 2.1457 115.8915 0.5613 0.0000 0.9387 1.2204 x 2,10,14,16
[2.3 130] 2.1457 115.8915 0.5613 0.0000 0.9387 1.2204 x 2,10,14,16
F = x4 − α(w1f1 + w2f2), wi = 1/(fu

i − f i)
fu = [3.0 200] Unless Otherwise Specified
Convergence Tolerances = 1e-7; Active Constraints (Cons)
Constraints 1-4: Lower Bounds = [0̄]
Constraints 5-8: Upper Bounds = [1.5 1.5 1.5 3.0]
Constraint 9: 0 ≥ cm,
Constraint 10: 0.2 ≥ max(ynew), where ynew is the airfoil’s y coordinate,
Constraint 11: 0.2 ≥ −min(ynew),
Constraint 12: 0.3 ≥ max(ynew) − min(ynew),
Constraint 13: −0.1 ≥ −max(ynew) + min(ynew),
Constraint 14: x4 ≥ w1(fu

1 − f1)
Constraint 15: x4 ≥ w2(fu

2 − f2)
Constraint 16: 1.5 ≥ x1 + x2 + x3
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Table 5. Buckle-Wing Alternate Bases, Starting Point x0=[0.5 0.5 0.5 1.0]

f cl cl/cd x1 x2 x3 x4 Pareto Cons
[2.0 140] 2.1687 149.2055 0.5803 0.5227 0.1024 0.9438 no NR
[2.0 150] 2.0913 153.4535 0.8615 0.3186 0.0054 0.9770 no NR
[2.0 160] 1.9530 154.8810 0.9137 0.1788 0.0000 1.0366 yes NR
[2.0 170] 1.9418 154.9397 0.8572 0.2285 0.0000 1.1185 yes 3,11
[2.1 130] 2.3440 145.4206 0.6564 0.5968 0.0804 0.9159 no NR
[2.1 140] 2.2026 148.9075 0.5660 0.5689 0.0963 0.9646 no NR
[2.1 150] 2.1591 153.0544 0.9026 0.2789 0.0378 0.9796 yes NR
[2.2 150] 2.1837 149.0955 0.6111 0.5021 0.1022 1.0060 no NR
[2.2 160] 2.0894 149.3864 0.5841 0.4561 0.1086 1.0758 no NR
[2.2 170] 1.9419 154.9395 0.8573 0.2283 0.0000 1.1159 yes 11
[2.5 140] 2.4421 136.2838 0.3994 0.5490 0.3518 1.0232 no NR
[2.5 150] 2.4798 148.7860 0.8483 0.5087 0.0718 1.0081 yes NR
[2.5 160] 2.2790 147.6265 0.5855 0.6172 0.0852 1.0884 no NR
[2.5 170] 2.1109 148.6320 0.3087 0.7843 0.0836 1.1644 no 11
[2.6 130] 2.6790 135.5930 0.4102 0.6195 0.4118 0.9671 no NR
[2.6 140] 2.6341 142.2728 1.3279 0.0000 0.1663 0.9858 yes 2,10,11
[2.6 150] 2.3936 137.1001 0.3947 0.5819 0.3074 1.0860 no 10,11
[2.7 130] 2.7423 133.3630 0.0838 0.9544 0.4407 0.9816 yes NR
[2.7 140] 2.6510 136.5926 0.2280 0.7859 0.4109 1.0213 no NR
[2.7 150] 2.5719 143.9487 0.8267 0.6176 0.0556 1.0557 yes NR
[2.7 160] 2.3395 138.0592 0.4058 0.5463 0.2981 1.1567 no 10,11
[2.9 120] 2.8932 124.0234 0.4272 0.4280 0.6449 1.0034 no 11
[2.9 130] 2.8742 127.9077 0.1349 0.6889 0.6604 1.0123 yes 11
[2.9 140] 2.7997 132.3587 0.0000 0.9256 0.5512 1.0478 yes 1,10,11
[3.0 120] 2.9836 118.5199 0.7035 0.0000 0.7965 1.0082 yes NR
[3.0 130] 2.8861 124.9580 0.4291 0.4387 0.6323 1.0571 yes NR
[3.0 140] 2.8678 129.4216 0.0296 0.8576 0.6128 1.0661 yes NR
[3.0 150] 2.7764 133.2331 0.0000 0.9304 0.5360 1.1118 yes NR
[3.0 160] 2.6596 136.1690 0.4624 0.6031 0.3758 1.1702 yes 10,11
[3.2 110] 3.1940 110.9140 0.3206 0.0000 1.1794 1.0034 yes NR
[3.2 120] 3.0731 107.3064 0.0000 0.0000 1.3497 1.0705 no NR
[3.2 130] 3.0171 112.7285 0.2966 0.0000 1.1077 1.1016 yes 11
[3.2 140] 3.1940 110.9140 0.3206 0.0000 1.1794 1.0034 no NR
[3.2 150] 3.0731 107.3064 0.0000 0.0000 1.3497 1.0705 no NR
[3.2 160] 3.0171 112.7285 0.2966 0.0000 1.1077 1.1016 (used) NR
[3.2 170] 2.9874 115.8806 0.2397 0.4421 0.8182 1.1507 yes 11

continued next page
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Table 6. Buckle-Wing Alternate Bases, continued

f cl cl/cd x1 x2 x3 x4 Pareto Cons
[3.4 100] 3.3714 99.9400 0.0000 0.0000 1.5000 1.0179 yes 2,7,10,11
[3.4 110] 3.3129 99.6543 0.0000 0.0000 1.4704 1.0545 no NR
[3.4 120] 3.2531 103.4741 0.0020 0.0000 1.4387 1.0918 no NR
[3.6 90] 3.3714 99.9400 0.0000 0.0000 1.5000 1.1633 (used) 2,7,10,11
[3.6 100] 3.3714 99.9400 0.0000 0.0000 1.5000 1.1633 (used) 2,7,10,11
[3.6 110] 3.3714 99.9400 0.0000 0.0000 1.5000 1.1633 (used) 2,7,10,11
[3.6 120] 3.3714 99.9400 0.0000 0.0000 1.5000 1.1633 (used) 2,7,10,11
[3.6 130] 3.3300 97.0000 NR NR NR NR no NR

continued below

Table 7. Buckle-Wing Alternate Bases, Starting Point x0=[1.0 0.3 0.1 1.0]

f cl cl/cd x1 x2 x3 x4 Pareto Cons
[2.0 140] 2.2236 151.9241 0.9271 0.3062 0.0322 0.9255 no 10,11
[2.0 150] 2.0873 154.3659 1.1809 0.0000 0.0000 0.9709 no 2,3,10,11
[2.0 160] 1.9941 155.1090 1.0784 0.0399 0.0000 1.0349 no 3,11
[2.2 150] 2.2258 151.3820 1.2672 0.0077 0.0000 0.9908 yes 3,10,11
[2.5 130] 2.6561 140.6166 1.3081 0.0000 0.1919 0.9375 yes NR
[2.5 140] 2.5682 144.3618 0.8637 0.5731 0.0588 0.9727 yes 10,11
[2.5 150] 2.4795 148.7727 1.0580 0.3287 0.0484 1.0082 no NR
[2.5 160] 2.4049 154.6748 1.0770 0.2905 0.0245 1.0380 yes 10
Convergence Tolerances = 1e-7
fu = [5.0 300] wi = 1/(fu

i − f i)
Constraints 1-4: Lower Bounds = [0̄]
Constraints 5-8: Upper Bounds = [1.5 1.5 1.5 3.0]
Constraint 9 : 0.9 ≥ clfused

Constraint 10: x4 ≥ w1(fu
1 − f1)

Constraint 11: x4 ≥ w2(fu
2 − f2)

Constraint 12: 1.5 ≥ x1 + x2 + x3
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