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Using surrogate models in place of high fidelity engineering simulations can help reduce
design cycle times and cost by enabling rapid analysis of alternative designs. Surrogate
models can also be used in a deliverable product as an efficient replacement for large lookup
tables or as a soft sensor to predict quantities than cannot be directly measured. Many
different surrogate modeling techniques exist, including new commercial technologies, each
with different capabilities and pitfalls. The goal of this research is to aid the designer in
selecting the appropriate surrogate model by comparing two popular techniques, second
order regression and kriging, along with a new commercial application called Datascape.
The three different modeling techniques are compared on model accuracy, computational
efficiency, robustness, transparency, and ease of use. The comparisons were done using
three test problems: an Earth-Mars transfer orbit problem, the analytic Shekel function,
and a low Earth orbit three-satellite constellation design problem. It was found that kriging
models performed the best when the sample data used to build the models was sparse, when
larger sample sets were used Datascape produced more accurate models.

I. Introduction

In competitive, technically challenging environments, surrogate models can reduce program cost and in-
crease the efficiency of the design process. These approximation models can be applied in different phases

and aspects of the engineering design process. Design optimization can use surrogate models when the com-
putational expense of high fidelity simulations is prohibitive or when limited physical experiments can be
conducted. Executable architecture simulations can also leverage surrogate models to provide rapid feedback
concerning system architecture tradeoffs. A deliverable product, such as an embedded system or soft sensor,
can even use these models to replace large lookup tables or complicated calculations. Another non-standard
way in which surrogate models can be used is to reduce software licensing costs by capturing the response
of expensive simulation tools for use by other engineers and decision makers in the preliminary design phases.

Many different surrogate modeling techniques have been developed for, or applied to, multidisciplinary
analysis and optimization. Probably the most widely used methods are first and second order polynomial
regression techniques.1–5 Regression models are created by performing a least squares fit of data to a linear
or quadratic function. Such methods are relatively computationally efficient and produce a unimodal smooth
fit to data that may contain random errors found in physical or stochastic experiments. However, this type
of model requires the assertion that the data being modeled behaves linearly or quadratically. There is also
some debate as to whether or not these methods should be applied to deterministic computer experimental
data.6 To address this debate Sacks et al.,7 proposed an interpolation technique called design and analy-
sis of computer experiments (DACE) to interpolate data from deterministic computer simulations. These
interpolation models were based on work, known as kriging, done in the spatial statistics and geostatics.
Kriging models have the ability to model multi-modal data but generally require more computational power
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to develop. Kriging models have been gaining in popularity in recent years for use in engineering design.8–13

They have been used to model the response of many engineering systems, including the design of a low-boom
business jet by Chung and Alonso14 and the design of an aerospike nozzle by Simpson et al.15 Martin and
Simpson conducted a study on using kriging models to approximate deterministic computer models and
discussed the applicability of various kriging variants.16,17

Commercial off-the-shelf (COTS) surrogate modeling software has also begun to emerge as a viable ap-
proach for industrial use. A COTS solution has two main advantages for a company: they are available
for immediate use with no development and testing costs and for the support that is traditionally supplied
along with the software. Datascaper is one such COTS tool that has recently been released. The surrogate
modeling method used by the Datascape tool was originally developed in the 1990’s at Lockheed Martin.
Third Millennium Products (TMP) won a bid for exclusive rights to develop and license Lockheed Martin’s
unique modeling method in December of 2002. The method has been used on many projects within Lock-
heed Martin but no formal comparison of the method to other surrogate modeling techniques such as second
order regression or kriging has been published. Datascape has the ability, like the regression techniques, to
handle data from stochastic experiments, including multiple evaluations at the same trial point, without any
assumptions as to the form of the model; furthermore, it can produce multi-modal approximations.

Previous studies have compared kriging and second order regression models. Giunta and Watson10 did an
initial exploration of the accuracy and modeling capabilities of kriging and second order regression models
using a mathematical test problem that included high and low amplitude sinusoidal functions to simulate
numerical noise often found in realistic engineering design spaces. Chung and Alonso18 compared the accu-
racy of the same two methods for use in approximating the objective function in design optimization and
concluded that both methods are practically applicable to realistic design optimization, using a supersonic
business jet as a test case. Jin et al.19 did a comparative study of second order regression, kriging, multivari-
ate adaptive regression splines (MARS), and radial basis functions for mainly analytic test functions. In this
paper kriging and second order regression methods are compared along with the COTS tool Datascape, using
a two engineering and one mathematical test problem. The comparison not only includes the accuracy of
the three methods but also the computational time required for constructing the different surrogate models,
the applicability, and their ease of use.

In this paper an overview of each of the three surrogate modeling methods is given. Section III describes
the different statistics and criteria used to compare the three techniques. Then three test problems are
introduced and their respective results are discussed in Section IV. The test problems include modeling
Earth-Mars transfer orbits, a standard analytic challenge function, and a three-satellite constellation. Fi-
nally, section VI provides conclusions and recommendations for future work.

II. Surrogate Modeling Techniques

A. Datascaper

Datascape is a COTS surrogate modeling application. The methodology used to create the surrogate mod-
els is proprietary; however, according to the user’s manual, it uses features from fuzzy logic, non-linear
regression and numerical optimization and presents them in a hybrid format.20 Datascape was developed
by Third Millennium Productions, Incorporated, which was founded by two Lockheed Martin engineers in
1990 and was originally given the rights to commercialize Lockheed Martins finite element post-processing
technology. They were subsequently approached to commercialize and develop Lockheed Martin Aeronauti-
cal Company’s unique modeling method in 2002. It was from this method that Datascape was developed.
Datascape’s models are based on a small number of coefficients, which allow users to update only the co-
efficients, rather than replace the entire embedded model. Datascape uses an iterative learning process to
build a model from the data points. The graphical user interface allows for dynamic visualization of the
surrogate model via a 3D surface view which can be used during the training processes. Appendix A shows
screenshots of the application. The application also allows users to observe the evolution of the model in the
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form of statistical information and 2D correlation plotsa. Datascape models have been used on development
and operations of the F-16, which saved an estimated $36 million.

Currently Datascape supports building a surrogate model with up to 10 design variables at a time (as of
version 1.9k); this, however, is to be increased in future versions. The application can handle over a million
training points on a standard PC. Creating a surrogate model using Datascape is a primarily straightforward
and intuitive process. The user must select the number of points on the influence functions (in the range of
4-180, default of 20), which are essentially functions used to characterize each dimension of the design space.
The higher the number of points on the influence functions, the greater the flexibility Datascape has in fitting
the data; however with this higher flexibility, the chance of capturing noise in the model becomes greater
and generally requires more CPU time for convergence. A choice of using a smaller number of points on the
influence function results in model that captures the general regressive trend of the data. Different problems
require different selections of this parameter, and in this work a few preliminary runs were preformed for
each test problem to determine a suitable number. The modeling learning process can also be stopped at any
point in time and still produce a usable model. By default, Datascape uses a squared error fit function to
evaluate the quality of its model using a training data set. Then it iteratively refines the model to minimize
the error. The resulting surrogate models can be evaluated in the user interface, a C++ API, or with an
Excel plug-in. Another result of creating a surrogate model using Datascape is that the method produces a
ranking of all the design variables so the designer can understand the relative importance of each variable
over the entire design space.

B. Kriging

The second surrogate modeling technique compared in this paper is kriging. Kriging presupposes that the
true unknown function can be modeled as a combination of a fixed and known trend function, B(x), and
a departure from that function that is a Gaussian random function, Z(x), with mean of zero and non-zero
variance σ2. Therefore, the unknown function is expressed as,

ŷ(x) = B(x) + Z(x). (1)

This unknown function is then estimated using a set of sample points, y, which have been evaluated using the
truth function or the original simulation. The kriging approximation is typically formulated as follows:21–23

ŷ = fB̂ + rT (x)R−1(y − fB̂), (2)

where f is a constant vector typically of all ones,17 R is the correlation matrix between the sample points,
and r is the correlation vector between any new point and the original sample points. A variety of correlation
functions can be used.24 The one used in this investigation, and most frequently in engineering applications,
is the Gaussian function,

R(xi, xj) = e−
Pnv

k=1 θk|xi
k−xj

k|2 , (3)

proposed by Sacks7 which includes a spacial correlation parameter vector θ. The spacial correlation para-
meters are found by solving an optimization problem using maximum likelihood estimation,10,15 which can
be computationally intensive.25

Kriging is a very flexible method due to the various correlation functions that can be used both as a regressive
or an interpolative model based on the choice of f . The main drawbacks of the method are: if any of the
sample points used to construct the model are too close, the correlation matrix can become singular and large
amounts of computer memory and CPU time are needed for constructing models with high dimensionality
or large sample sets. In this work the DACE Matlab toolbox is used to construct the kriging surrogate
models.26

aDatascape website: http://www.tmpinc.com/datascape overview.html
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C. Second Order Regression

The third and final surrogate modeling technique compared in this research is second order regression (SOR).
The general equation that describes a second order polynomial model is of the general form:

ŷ = c0 +
nv∑

j=1

cjxj +
nv∑

j=1

nv∑

k=j

cnv−1+j+k xj xk, (4)

where nv is the number of variables. Or in matrix notation

ŷ = cT x̄. (5)

where

x̄ = [1, x1, x2, . . . , x
2
1, x1x2, x1x3, . . . , x

2
nv

]. (6)

To construct the second order model, the coefficients, c, must be solved for using a set of data points sampled
throughout the design space. This set of points are stored in a matrix of the form

A =




1 x
(1)
1 x

(1)
2 . . . (x(1)

nv )2

. . . . . . .

. . . . . . .

1 x
(n)
1 x

(n)
2 . . . (x(n)

nv )2


 ε Rn×m, (7)

where n is the number of sampled data points and m = (nv +1)(nv +2)/2. Each of the points are evaluated
using the truth model,

y = [y(1), . . . , y(n)]T ε Rn. (8)

The sampled data set stored in this polynomial format yields a linear set of equations,

Ac = y, (9)

with the SOR coefficients as the only unknowns. The set of equations has a unique least squares solution,

c = (AT A)−1AT y, (10)

when the inverse, (AT A)−1, exists. Note that the solution requires n ≥ m, and if n > m then the system is
overdetermined and the model is regressive.

Sevreal of the major benefits of using SOR as a surrogate model are that it is a quite computationally efficient
method, it can smooth out noisy functions, and the resulting model coefficients provide a clear between the
design variables. The main drawbacks of the method are that it cannot model multimodal or non-symmetric
design spaces. For this work, the SOR method has been implemented in Matlab.

III. Model Comparison Measures and Data Sampling

The three different surrogate modeling techniques described in the previous section were compared using
multiple performance measures. The following five aspects, which Jin et. al19 proposed, were used to
compare the methods:

Accuracy: the ability of the surrogate model in predicting the response of the truth function over the design
space.

Robustness: the ability of the surrogate model to accurately predict the response of the truth function for
different problem sizes and types.

Efficiency: the computational time required to construct the surrogate model.
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Transparency: the ability of a surrogate modeling method to provide information about the contributions
of different design variables and the interactions among different variables.

Conceptual Simplicity: ease of implementation or use of the surrogate modeling technique.

In order to compare the accuracy, a validation set of data points was evaluated using the different surrogate
models and their predictions were contrasted with the true response. Three statistics, Equations (11)-(13),
were used to measure the accuracy using the validation set errors.19

R Squared:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

= 1− MSE

V ariance
, (11)

where ȳi is the mean of the truth function responses. The larger the value of R2 the more accurate the
surrogate model is; this is the main measure of accuracy.

Average Absolute Error (AAE):

AAE =
∑n

i=1 |yi − ŷi|
n

, (12)

is another measure of accuracy. AAE is highly correlated with the MSE and, therefore, with R2. The lower
the value of AAE the more accurate the model.

Maximum Absolute Error (MAE):

MAE = max(|y1 − ŷ1|, |y2 − ŷ2|, ..., |yn − ŷn|). (13)

MAE is generally not correlated with R2 or AAE. A small value of MAE is preferred, while a large value
could indicate that the model inaccurate in a region or regions of the design space depending on the values
of the first two accuracy measures.

All of the sample sets for the three different test problems were done using Latin Hypercubes27 and the same
data set was used for each of the different surrogate modeling techniques. For each of the test problems
an array of different sized sample sets was used to compare the robustness and efficiency of the surrogate
models for sparse to dense data sets. The validation set, used to calculate the three aforementioned accuracy
statistics, consisted of a much larger sample size than the largest data set used used to create the surrogate
models. For the Mars Transfer Orbit Design 1,000 validation points were used, and for the Shekel and
satellite constellation design problems 20,000 data points were used.

IV. Test Problem Descriptions and Results

In this section three test problems are described and their respective results are discussed. For each problem
a set of data points was evaluated using different numbers of sample points. Then for each of the different
sized sample sets the different surrogate modeling techniques were used to predict the response for a larger
validation set. For each trial the accuracy statistics R2, AAE, and MAE were calculated along with the time
it took each surrogate modeling technique to build the surrogate model. The four statistics are then plotted
to allow for easier analysis of the results; the raw data for each of the three test problems can be found in
Appendices B-D.

A. Earth-Mars Transfer Orbit Design

In this problem a surrogate model is desired to predict the total change in velocity, ∆V , to transfer a space-
craft from low Earth orbit (LEO) to an orbit around Mars with an inclination of 25o, eccentricity of 0.4,
and an altitude of periapsis of 250km (see Figure 1). We wish to model the total ∆V in order to predict
the mass of fuel required for the mission. The two input parameters considered in this model are the launch
date between 1 Jan to 1 Oct 2018 of the satellite from LEO at an parking altitude of 407 km and the time
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(a) Earth-Mars transfer orbit (b) Mars capture orbit and B-plane geometry

Figure 1. The Earth-Mars transfer and capture orbit geometries.

of flight (TOF) between Earth and Mars. The calculation of ∆V includes the initial departure maneuver, a
mid-course correction, and the Mars orbit insertion burn.

This problem was modeled using Satellite Toolkit (STK) using the Astrogator propagator developed by An-
alytic Graphics, Inc. in cooperation with the NASA Goddard Space Flight Center (GSFC) Flight Dynamics
Analysis Branch (FDAB). Astrogator is a commercialized and updated version of Swingby28 simulator de-
veloped by NASA and was used in analyzing and planning maneuvers operationally for Clementine,29 Lunar
Prospector,30 SOHO,31 and others.32
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Figure 2. Contour plot of the total ∆V required to send a satellite from Earth Orbit to a Mars capture orbit
as a function of launch date and time of flight.

The design space for this problem is very nonlinear and does contain some noise. A contour plot of
the total ∆V is shown in Figure 2. Six different sized sample sets were used for this test problem,
n = {10, 25, 50, 100, 200, 500}.
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1. Earth-Mars Transfer Orbit Results
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Figure 3. Accuracy and efficiency results for the Earth-Mars transfer orbit problem.

Using the six different data sets of the Earth-Mars transfer orbit problem, the three different surrogate
models produced the results shown in Figure 3. Sub-figures (a)-(c) are bar plots for the R2, AAE, and MAE
accuracy statistics and (d) is a semi-log plot of the CPU time required to construct the different surrogate
models on a PC with a 2.0 GHz Intel Pentium M processor and 1.0 gigabytes of RAM. The same PC was
used for all the results presented in this paper. A tabularized version of the results from this problem can
be found in Appendix B.

A comparison of the accuracy metrics in Figure 3 reveals many interesting trends. Datascape seems to have
a lower R2 value for sparse data sets, excluding the n = 10 case, than both SOR and kriging, and as the
sample sizes increase the Datascape models becomes more accurate, and in fact, produce the most accurate
results for the largest data set. Kriging, on the other hand, is the most accurate for the n = 25 trial by a
considerable margin, but then improves at a much lower rate as the sample size increases. The SOR method
seems to quickly converge to a steady state R2 value but is outperformed by both kriging and Datascape at
moderate samples sizes.
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The AAE results show a similar trend, in which the kriging models perform well at lower sample sizes and
Datascape improves faster as the samples sizes increase. The maximum absolute errors of all three methods
had similar results overall, SOR being slightly worse than the other two methods.

Computationally, SOR was by far the most efficient method; it was orders of magnitude faster than kriging,
which in turn was orders of magnitude faster than Datascape. Kriging seemed to show the highest rate of
increase in CPU power required for each increase in sample size; though the n = 500 trial only took 1.7
seconds while Datascape took almost an hour.

B. Shekel Function

The second test problem is an analytic function named after its inventor J. Shekel.33 This function is
generally used in testing global optimization algorithms due to its non-linearity and many local optima. In
this work we are using the Shekel function variant that has design variables, nv = 4, and each variable is
restricted in range between 2.0 and 6.0. The Shekel function is:

f(x) = −
5∑

i=1

1
(x−Ai)(x−Ai)T + ci

, (14)

where

A =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7




(15)

c = [0.1 0.2 0.2 0.4 0.4]T . (16)

For this problem nine different sized sample sets were used, n = {25, 50, 100, 250, 500, 1000, 2500, 5000, 10000},
in comparing the different surrogate modeling methods.

1. Shekel Problem Results

The results for the Shekel problem are plotted in Figure 4. A tabularized version of the results from this
problem can be found in Appendix C. For the two largest sample sets, kriging was unable to create a surro-
gate model. This was because building a kriging model with such large data sets would require additional
computer memory. Neither SOR or Datascape had this memory issue.

The R2 results, given in Figure 4a, show that the SOR method produced the least accurate model for all
of the sample sizes. In fact the SOR method seemed to converge to a value around 0.4 where as the other
two methods obtained maximum R2 values over 0.95. Datascape had the highest overall value of 0.99 when
n=10000, a trial in which kriging failed to construct a model.

The SOR method also had the highest AAE and MAE. Kriging and Datascape followed similar trends
in the AAE and MAE results with kriging generally having a lower AAE. Datascape produced the lowest
overall MAE, but again this was for a case in which a kriging model was not built due to memory limitations.

Datascape took, by a considerable margin, the longest to construct surrogate models for each sample size
and took just over 2 hours to complete the model for n=10000. At the opposite end of the spectrum, the
SOR method took only 0.02 seconds to build the a model for the n=10000 case. The kriging models again
had the highest sensitivity in CPU time required as a function of the number of samples, taking 0.03 seconds
to build a model for n=25 and 7 minutes for n=2500.
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Figure 4. Accuracy and efficiency results for the Shekel problem.

V. Satellite Constellation Design

In the third and final test problem of this research, surrogate models were constructed to predict the line-
of-sight access fraction to Valley Forge, Pennsylvania over a twenty four hour period for a constellation
of three satellites, each in a near circular orbit (e=0.024) with semimajor axis of 7173.47km (perigee alti-
tude of 621.9km). Figure 5 depicts an example of one such constellation. Line-of-sight access fraction is
defined here as the total time at least one of the three satellites has direct view of Valley Forge divided
by the 24 hour period. Nine orbital design variables were considered: the inclination, in, of satellites 1-3,
the right ascension of the ascending node (RAAN), Ωn, of satellites 2-3, the argument of perigee, ωn, of
satellites 2-3, and mean anomaly of satellites 2-3, νn. The simulations were performed with AGI’s Satellite
Toolkit using a J4 Perturbation propagator; which is an analytic propagator with corrections for the Earth’s
oblateness and asymmetric gravitational field. For this problem eight different sized sample sets were used,
n = {50, 100, 250, 500, 1000, 2500, 5000, 10000}.
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Figure 5. A three-satellite constellation with access cones.

2. Satellite Constellation Problem Results

The three satellite constellation problem results are plotted in Figure 6 along with a tabularized version in
Appendix D. As in the Shekel problem kriging was unable to create a surrogate model for the largest two
sample sets due to memory issues. Likewise, neither SOR or Datascape had this problem. Contour plots
of the access fraction are plotted as a function of the inclinations of Satellites 1 and 2 as predicted by the
STK simulation and of the three surrogate modeling techniques (for the n=1000 case) are given Figure 7.
The contour plots are shown here to allow for a visual comparison of the surrogate models produced by the
three techniques being studied. As expected, the SOR model showed the “bulls-eye” shape characteristic of
a quadratic function, and didn’t capture the different local optima of the design space. Both kriging and
Datascape were able to capture the four local maxima; the kriging model is smooth, while the Datascape is
piecewise linear with sharp corners.

Datascape results for n = 15 and n = 100 and SOR results for n = 50 are not shown in the R2 bar graph
in Figure 6 because they had negative values, and therefore didn’t have enough data points to construct a
usable model. Both the the R2 and AAE results show that the kriging model performed the best for the
four smallest data sets and Datascape preformed the best for the larger sets.

The maximum absolute error results, shown in Figure 6, show that Datascape has the highest single point
error from the validation set for the trials of less 5,000 samples. For the higher sample sizes Datascape’s
maximum error become much smaller and similar to the results of the other models. This signifies that while
the Datascape models were relatively accurate on average over the design space, for the lower data sets, they
had at least one region in which they predicted the access fraction poorly.

The CPU time results for the SOR and Datascape trials were consistent with the previous test problems,
taking into account the added number of design variables. Kriging, however, required a larger time to con-
struct a model than Datascape did for n = 2, 500 and showed a sharp increase in CPU time required for
each larger data set.
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Figure 6. Accuracy and efficiency results for the Satellite Constellation problem.

VI. Conclusions and Future Work

In this research three surrogate modeling methods were compared: second order regression, kriging, and a
COTS application called Datascape. They were compared by constructing a metamodel for a wide range of
sample sizes, from sparse to dense, for three different test problems each having different numbers of design
variables. Then a validation set of data points was used to measure the accuracy of each model by comparing
the predictions of the models to the output of the simulation of test function. The CPU time required by
the different modeling technique to create the surrogate models was also compared.

The accuracy of the surrogate modeling techniques was measured using three statistics, R2, AAE, and MAE,
to quantify the error between the surrogate models predictions and the validation responses. It was observed
that when the surrogate models were created with the smaller sample sets, kriging had the lowest error.
However, for the larger sample sets the Datascape performed the best. SOR was not found to be a suitable
surrogate modeling technique for modeling the entire design space.

Computationally, SOR required the least amount of CPU time; in fact, it required orders of magnitude less
than either kriging or Datascape. While kriging had the highest sensitivity to the number of design variables
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(c) Kriging
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(d) Datascape

Figure 7. Access fraction contour plots showing the difference between the simulation and the surrogate
modeling techniques using n=1000 sample points.

as well as the number of sample points used in building the models, Datascape was much more CPU intensive
taking tens of minutes to converge even for smaller data sets. Kriging was unable to produce a surrogate
model for the n = 5, 000 and n = 10, 000 cases due to memory requirements in constructing a single model
for the entire design space. Conversely, SOR and Datascape had no such limitation; both methods could
easily handle much larger data sets. All of the methods are very efficient at predicting new data points; SOR
and Datascape could predict 20,000 points for the satellite design problem in less than a second, and kriging
took just under two seconds.

The robustness of the three modeling techniques was difficult to quantify in this work because of the limited
number of application types. It was observed that as the sample sizes increased, both SOR and kriging had
a more monotonic decrease in prediction error. The Datascape models tended to be less robust in handling
different sized data sets, especially for the smaller sample sets.

SOR and Datascape models provided excellent transparency, as they both provide direct contribution mea-
sures of the different design variables. Kriging provides some information in terms of its spatial correlation
parameters, but they are harder to interpret.

SOR and kriging are both very easy methods to use and many free as well as commercial packages are readily
available. In the kriging model there are many choices of correlation functions that can be used; though, the
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Gaussian function is generally used in most engineering applications. Datascape generally didn’t perform
well as a “black-box” surrogate modeling technique. The optimal choice of points on the influence functions
were very problem dependent and took a few iterations for each problem.

In future work, more test problems should be used to broaden the conclusions made in this study. Also
a comparison of other surrogate modeling techniques could be included. Another interesting comparison
between the different surrogate models could be the accuracy with which they predict local optima locations
and values.

Acknowledgments

The authors would like to thank Craig Coburn, Angie Wrubel, and Rebekah Gano for their technical help and
for reviewing this manuscript. Special thanks are also due to Mike Loucks of Space Exploration Engineering
for his help with Astrogator and Mark Lovrich of TMP Inc. for help in using Datascape. Funding for this
Lockheed Martin IS&S strategic initiative research project was graciously approved by Charlie Fisk and Dan
Littley.

References

1Myers, R. H. and Montgomery, D. C., Response Surface Methodology: Process and Product Optimization Using Designed
Experiments, Wiley, 1995.
2Giunta, A. A., Balabanov, V., Haim, D., Grossman, B., Mason, W. H., Watson, L. T., and Haftka, R. T., “Multidisciplinary

Optimisation of a Supersonic Transport Using Design of Experiments Theory and Response Surface Modeling,” Aeronautical
J., Vol. 101, No. 1008, 1997, pp. 347–356.
3Healy, M. J., Kowalik, J. S., and Ramsay, J. W., “Airplane Engine Selection by Optimization on Surface Fit Approximations,”

J. Aircraft , Vol. 12, No. 7, 1975, pp. 593–599.
4Sellar, R. S., Stelmack, M. A., Batil, S. M., and Renaud, J. E., “Response Surface Approximations for Discipline Coordination

in Multidisciplinary Design Optimization,” No. AIAA-96-1383, 1996.
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Appendix A: Datascape Screenshots

(a) Metrics Summary Screen.

(b) Surrogate Surface View.

Figure 8. Screen shots of the Datascape Application.
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Appendix B: Earth-Mars Transfer Orbit Problem Tabularized Results

Method CPU time [sec] RMS R2 AAE MAE σ

n= 10
SOR 7.9898e-004 1.2150e+000 6.2247e-002 7.1730e-001 5.8629e+000 1.1766e+000
Kriging 6.4732e-003 1.1547e+000 1.5296e-001 7.6048e-001 5.2034e+000 1.1282e+000
Datascape 6.2500e+000 9.4894e-001 4.2797e-001 7.5668e-001 3.8276e+000 9.4947e-001
n= 25
SOR 8.0569e-004 8.8119e-001 5.0674e-001 6.2345e-001 4.0711e+000 8.7712e-001
Kriging 1.8102e-002 6.1178e-001 7.6224e-001 3.6223e-001 3.7614e+000 5.8490e-001
Datascape 3.9800e+002 9.4387e-001 4.3407e-001 6.2374e-001 4.8619e+000 9.4397e-001
n= 50
SOR 8.2189e-004 8.2559e-001 5.6702e-001 6.1667e-001 3.8814e+000 8.2332e-001
Kriging 2.6861e-002 5.8649e-001 7.8150e-001 3.7211e-001 3.4602e+000 5.6873e-001
Datascape 2.6070e+003 9.3694e-001 4.4235e-001 7.1758e-001 3.4116e+000 9.3245e-001
n= 100
SOR 8.4676e-004 8.3317e-001 5.5903e-001 6.3835e-001 3.7493e+000 8.3216e-001
Kriging 5.7672e-002 5.6039e-001 8.0051e-001 3.4507e-001 2.8737e+000 5.6075e-001
Datascape 3.0850e+003 7.5102e-001 6.4170e-001 5.7411e-001 3.6947e+000 7.4985e-001
n= 200
SOR 8.6268e-004 8.2917e-001 5.6326e-001 6.3768e-001 3.7362e+000 8.2807e-001
Kriging 1.9527e-001 4.9264e-001 8.4583e-001 2.9080e-001 3.3755e+000 4.8801e-001
Datascape 3.1140e+003 4.8651e-001 8.4964e-001 3.1094e-001 3.6877e+000 4.8587e-001
n= 500
SOR 9.5627e-004 8.1656e-001 5.7644e-001 6.2166e-001 3.7438e+000 8.1608e-001
Kriging 1.6969e+000 4.5289e-001 8.6971e-001 2.5611e-001 3.9101e+000 4.4922e-001
Datascape 3.4040e+003 3.9858e-001 8.9908e-001 2.4326e-001 3.6526e+000 3.9787e-001
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Appendix C: Shekel Problem Tabularized Results

Method CPU time [sec] RMS R2 AAE MAE σ

n= 25
SOR 1.3728e-003 2.5466e-001 6.8221e-002 1.6061e-001 6.4510e+000 2.5466e-001
Kriging 3.1208e-002 2.3911e-001 1.7852e-001 1.3563e-001 6.1874e+000 2.3261e-001
Datascape 8.2200e+000 2.5113e-001 9.3887e-002 1.2713e-001 6.7460e+000 2.5094e-001
n= 50
SOR 1.4398e-003 2.1969e-001 3.0652e-001 1.1439e-001 6.5015e+000 2.1915e-001
Kriging 1.0234e-001 1.9904e-001 4.3077e-001 9.1213e-002 6.2355e+000 1.9904e-001
Datascape 3.7920e+003 1.7786e-001 5.6804e-001 9.0188e-002 4.5847e+000 1.7755e-001
n= 100
SOR 1.5114e-003 2.1064e-001 3.6252e-001 1.0249e-001 6.5452e+000 2.1063e-001
Kriging 3.1040e-001 1.4012e-001 7.1791e-001 5.9605e-002 5.2159e+000 1.3872e-001
Datascape 1.5670e+003 1.0943e-001 8.2795e-001 6.3914e-002 3.5746e+000 1.0890e-001
n= 250
SOR 1.9477e-003 2.0930e-001 3.7060e-001 8.3015e-002 6.6307e+000 2.0889e-001
Kriging 1.8041e+000 1.1323e-001 8.1578e-001 4.0624e-002 5.0472e+000 1.1301e-001
Datascape 1.9880e+003 1.1905e-001 7.9635e-001 5.1069e-002 5.2291e+000 1.1856e-001
n= 500
SOR 2.4579e-003 2.0842e-001 3.7586e-001 8.6290e-002 6.6160e+000 2.0838e-001
Kriging 9.2302e+000 1.0037e-001 8.5524e-001 2.2634e-002 5.1029e+000 1.0031e-001
Datascape 2.2370e+003 1.0130e-001 8.5257e-001 2.4433e-002 5.3072e+000 1.0127e-001
n= 1000
SOR 2.3844e-003 2.0767e-001 3.8034e-001 8.3814e-002 6.6119e+000 2.0743e-001
Kriging 3.7943e+001 7.6209e-002 9.1655e-001 1.5525e-002 4.3666e+000 7.6210e-002
Datascape 2.1730e+003 7.4761e-002 9.1969e-001 1.8127e-002 4.3801e+000 7.4745e-002
n= 2500
SOR 4.4785e-003 2.0657e-001 3.8687e-001 9.1407e-002 6.5706e+000 2.0658e-001
Kriging 4.1510e+002 4.7329e-002 9.6781e-001 1.2083e-002 2.9771e+000 4.7320e-002
Datascape 4.7260e+003 7.7213e-002 9.1434e-001 3.6827e-002 3.3759e+000 7.7214e-002
n= 5000
SOR 7.2269e-003 2.0656e-001 3.8696e-001 9.1370e-002 6.5680e+000 2.0656e-001
Kriging - - - - - -
Datascape 6.4790e+003 4.8019e-002 9.6687e-001 2.4057e-002 1.9141e+000 4.8020e-002
n= 10000
SOR 1.6120e-002 2.0654e-001 3.8707e-001 9.3357e-002 6.5598e+000 2.0654e-001
Kriging - - - - - -
Datascape 7.7280e+003 2.6128e-002 9.9019e-001 1.6316e-002 9.6655e-001 2.6127e-002
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Appendix D: Satellite Constellation Problem Tabularized Results

Method CPU time [sec] RMS R2 AAE MAE σ

n= 50
SOR 4.3480e-003 1.4632e-001 -1.1526e+001 1.0938e-001 8.4057e-001 1.4015e-001
Kriging 1.7888e-001 3.5723e-002 2.5332e-001 2.8241e-002 1.4344e-001 3.5622e-002
Datascape 1.1900e+002 4.9622e-002 -4.4068e-001 3.5661e-002 5.2576e-001 4.8276e-002
n= 100
SOR 5.0015e-003 3.3663e-002 3.3698e-001 2.6720e-002 1.4900e-001 3.3630e-002
Kriging 7.4305e-001 3.0391e-002 4.5960e-001 2.4124e-002 1.3315e-001 2.9980e-002
Datascape 1.3920e+003 6.3590e-002 -1.3659e+000 4.4300e-002 6.6373e-001 6.0625e-002
n= 250
SOR 6.0223e-003 2.5212e-002 6.2809e-001 2.0343e-002 9.3021e-002 2.5195e-002
Kriging 5.2523e+000 2.3496e-002 6.7698e-001 1.8591e-002 1.2451e-001 2.3485e-002
Datascape 1.9010e+003 3.1494e-002 4.1968e-001 2.2191e-002 2.9919e-001 3.1353e-002
n= 500
SOR 9.0827e-003 2.4122e-002 6.5955e-001 1.9483e-002 8.7066e-002 2.4113e-002
Kriging 2.6542e+001 1.9128e-002 7.8592e-001 1.4975e-002 1.0106e-001 1.9050e-002
Datascape 4.1520e+003 2.2300e-002 7.0904e-001 1.6360e-002 3.4254e-001 2.2271e-002
n= 1000
SOR 1.3917e-002 2.3598e-002 6.7417e-001 1.9117e-002 8.8453e-002 2.3598e-002
Kriging 1.2055e+002 1.8196e-002 8.0627e-001 1.4121e-002 9.7872e-002 1.8195e-002
Datascape 4.7355e+003 1.6668e-002 8.3744e-001 1.3000e-002 1.2574e-001 1.6669e-002
n= 2500
SOR 3.4768e-002 2.3165e-002 6.8603e-001 1.8782e-002 8.5438e-002 2.3162e-002
Kriging 7.0156e+003 1.6735e-002 8.3614e-001 1.3135e-002 8.1664e-002 1.6735e-002
Datascape 3.2760e+003 1.5663e-002 8.5645e-001 1.1193e-002 3.6191e-001 1.5660e-002
n= 5000
SOR 7.6776e-002 2.3137e-002 6.8680e-001 1.8738e-002 8.3144e-002 2.3137e-002
Kriging - - - - - -
Datascape 7.6500e+003 1.2594e-002 9.0720e-001 9.9849e-003 6.1294e-002 1.2589e-002
n= 10000
SOR 2.9610e-001 2.3066e-002 6.8870e-001 1.8709e-002 8.2957e-002 2.3066e-002
Kriging - - - - - -
Datascape 8.8200e+003 1.1573e-002 9.2163e-001 1.0055e-002 7.2945e-002 1.2840e-002
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