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Many optimization methods for simulation-based design rely on the sequential use of
metamodels to reduce the associated computational burden. In particular, kriging models
are frequently used in variable fidelity optimization. Nevertheless, such methods may
become computationally inefficient when solving problems with large numbers of design
variables and/or sampled data points due to the expensive process of optimizing the kriging
model parameters each iteration. One solution to this problem would be to replace the
kriging models with traditional Taylor series response surface models. Kriging models,
however, have been shown to provide good approximations of computer simulations that
incorporate larger amounts of data, resulting in better global accuracy. In this paper
two metamodel update management schemes (MUMS) are proposed to reduce the cost
of using kriging models sequentially by updating the kriging model parameters only when
they produce a poor approximation. The two schemes differ in how they determine when
the parameters should be updated. The first method uses ratios of likelihood values (L-
MUMS), which are computed based on the model parameters and the data points used to
construct the kriging model. The second scheme uses the trust region ratio (TR-MUMS),
which is a ratio that compares the approximation to the true model. Two demonstration
problems are used to evaluate the proposed methods: an internal combustion engine sizing
problem and a control-augmented structural design problem. The results indicate that the
L-MUMS approach does not perform well. The TR-MUMS approach, however, was found
to be very effective; on the demonstration problems, it reduced the number of likelihood
evaluations by three orders of magnitude compared to using a global optimizer to find the
kriging parameters every iteration. It was also found that in trust region-based methods,
the kriging model parameters need not be updated using a global optimizer–local methods
perform just as well in terms of providing a good approximation without effecting the
overall convergence rate, which, in turn, results in a faster execution time.

Nomenclature

β Multiplicative scaling function
∆ Trust region size
εf Objective function convergence tolerance
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εx Design variable convergence tolerance
γ Additive scaling function
R Correlation matrix
r Correlation vector
ρ Trust region ratio
σ2 Variance
θ Correlation or kriging model parameters
% Likelihood ratio
Ai The ith kriging model management parmeter
K Optimization scheme used to determine the kriging model parameters
L Likelihood function
l Log-likelihood function
MSE Mean squared error
ns Number of sample sites used in kriging model
nv Number of variables used in kriging model
B Global kriging trend function
P l1 penalty function
R Correlation function
y Function modeled using kriging
Z Stochastic process model in kriging

Subscripts
n Current iteration number
scaled Scaled low fidelity value

Superscripts
ˆ Predicted value or function
T Transpose operator

I. Introduction

Simulation-based design methods have recently incorporated metamodels in creative ways to reduce com-
putational expense. Metamodels are derived from an array of sample points evaluated using a simulation

model; they can be either interpolative or approximate. Different types of metamodels have been developed
for various purposes. Some are locally accurate and computationally efficient to construct and evaluate, mak-
ing them very attractive for use in sequentially approximate optimization (SAO) methods. Other forms are
more global in scope but require larger computational effort to both construct and evaluate. However, global
metamodels have been successfully used as approximations of the more expensive computer simulations in
the design process.1,2 A prominent method to globally approximate deterministic computer simulations is
kriging; however, kriging models can be a computational burden when used in a sequential manner.3 The
computational expense arises from having to re-compute the kriging model parameters after each iteration
to include new data points. Methods for reducing the cost of using kriging models sequentially are proposed
and evaluated in this research.

Kriging was inspired by the work of Krige, a South African geologist. He proposed innovative concepts for
mining estimation but never formalized the method. Then Georges Matheron developed the Theory of Re-
gionalized Variables4 based on the work done by Krige and called the method kriging in his honor. A variant
of this method called ordinary kriging was first applied to deterministic computer simulations by Sacks et
al.3 and called Design and Analysis of Computer Experiments (DACE). Since this time it has been widely
used to approximate computer models.5–10 Kriging is flexible and quite robust in approximating complex
multi-dimensional functions, making it well suited for this application.

Kriging methods have been used to model the response of many engineering systems, including the design
of a low-boom business jet by Chung and Alonso11 and design of an aerospike nozzle by Simpson et al.12

Martin and Simpson conducted a study on using kriging models to approximate deterministic computer
models and discussed the applicability of various kriging variants.13,14
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In the optimization field kriging models have mostly served as surrogate models. However, they have also
been used in variable fidelity optimization (VFO), which are methods that reduce the cost of finding optima
of computationally expensive functions or simulations. Booker et al.,5 Jones et al.,15 and Sasena et al.16 all
used kriging models as surrogates which were managed through the course of the optimization. Gano et al.6

built kriging-based scaling functions that match low fidelity models to high fidelity models such that the
low fidelity model augmented with the scaling function approximate the high fidelity model. This scaling
approach combined with a trust region managed scheme provably converges to the solution of the higher
fidelity model with the intent of saving computational resources.

Kriging is typically used as an interpolation process; however, there are a number of model parameters that
must be chosen to control what effect nearby sample points have on the prediction of intermediate values.
The selection of these parameters can be costly and depends on the dimensionality of the problem as well as
the number of sample points used to construct the kriging model. There are two main methods of estimating
these parameters:14 cross validation and maximum likelihood estimation (MLE). In this work only the MLE
method is used because it provides an estimate of the variance and the likelihood gives a measure of the
model fitness. As its name implies, the MLE method involves an optimization to find the model parame-
ters that maximize the likelihood of the model parameters given the observations of the simulation. The
optimization can be performed with either a local optimizer, for example gradient-based or pattern search
methods, or using a global stochastic optimization scheme. Ripley,17 Warnes and Ripley,18 and Martin and
Simpson13 discuss problems with this optimization. They state two main difficulties: (1) the function is
prone to have multiple maxima and (2) the function may have long, almost flat ridges of near optimal val-
ues. To overcome these difficulties Martin and Simpson19 suggested the use of simulated annealing, which is
a stochastic optimization method. Simulated annealing, however, is much more computationally expensive
than a gradient-based method. This paper addresses the question: is the extra expense to build a possibly
better kriging model worthwhile in terms of the upper level optimization scheme (i.e., variable fidelity meth-
ods) in which it is used?

Because of the sequential nature of the variable fidelity optimization process, the kriging models are rebuilt
to include new information each iteration. This process of rebuilding the kriging model by refitting the
model parameters can be quite costly, as shown in Figure 1. The figure shows the exponential cost trend
of constructing a kriging model with increasing numbers of samples and design variables; the CPU time on
the vertical axis should be used as a relative scale due to the wide variation in computer processing speeds.
Figure 1a shows the trends for constructing a kriging model with fixed model parameters, while Figure 1b
accounts for optimizing the model parameters using a pattern search optimizer. For large problems with
many design variables or samples, the cost of rebuilding the kriging model could reduce or outweigh the
savings of using such methods. When the kriging models are rebuilt a maximum likelihood estimator is
used to find optimal parameter values. However, the interpolative nature of kriging does not depend on the
model parameters used; therefore, the kriging models may not need to be rebuilt, i.e., parameters refit, each
time a new data point is added. In this paper two metamodel update management schemes (MUMS) are
proposed to determine when the kriging model parameters should be updated; the methods are based on the
ratio of successive likelihood values (L-MUMS) and on using the trust region ratio value (TR-MUMS). This
research also determines if such management schemes can predict whether the kriging model parameters,
when updated, should be found using a local optimization update or with a more expensive but more robust
stochastic method.

In this paper a description of basic kriging theory is presented first (Section II) along with the local and
global optimization approaches used to fit the kriging model parameters (Sections II.A - II.C). Then a brief
overview of the variable fidelity method used to test the kriging model update strategies is given (Section
III). Next, a description of the update schemes is provided (Section IV) as well as the numerical procedure
for their evaluation (Section V). The update strategies are then demonstrated on an internal combustion
engine design problem and a control-augmented structural design problem (Section VI). Finally, conclusions
and future work are given (Section VII).
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Figure 1. Relative cost of building kriging models with different numbers of samples and design variables.

II. Ordinary Kriging Using Maximum Likelihood Estimation

Ordinary kriging can be used to scale a low fidelity model to match a higher fidelity model in the variable
fidelity optimization framework in Section III. The kriging model is built using all of the points in which the
models have been evaluated. The method for constructing a kriging model is briefly explained in the rest of
this section.

Kriging begins by estimating an unknown function, y, with the form15,20,21

ŷ(x) = B + Z(x). (1)

The term B is an unknown constant or global trend function, typically linear or quadratic. Z(x) is the
model of a stochastic process with a mean of zero, a variance σ2, and a co-variance of:

Cov[Z(xi), Z(xj)] = σ2R[R(xi,xj)], (2)

where R is the correlation matrix, R is the correlation function which is selected by the user, and i and j
run from 1 to ns. It is important to notice that R is symmetric and has unit values along the diagonal.

The selection of the correlation function is chosen by the user when generating the kriging model. In the
statistical and engineering literature,7,12 the Gaussian function is by far the most popular and is also used
in this work. It is defined as

R(xi, xj) = e−
∑nv

k=1 θk|xi
k−xj

k|2 , (3)

where θk is the vector of unknown correlation parameters which is of length nv, the number of design vari-
ables. Also, xi

k and xj
k are the kth elements of the sample points xi and xj .

The kriging model estimates values of y(x) at untried values of x given set of expected values or sample
points. The notation in this paper that distinguishes between the true value and an estimated value uses a
hat to denote the estimated values, such as y is the true response value and ŷ is the estimated value. The
mean squared error is defined as the square of the expected value of the difference between the real response
and the approximated one at any point. Mathematically this is stated as

MSE = E(y(x)− ŷ(x))2. (4)
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Because kriging is a interpolation process, the model will have no MSE at a sample point. If the MSE is
minimized, then the kriging predictor is

ŷ = fB̂ + rT (x)R−1(y − fB̂), (5)

where y is the vector of responses (objective values) to the sample locations {x1, . . . ,xns} and f is a constant
vector of all ones with length ns. In Eq. (5) the correlation vector, r(x), is the correlation between the value
at a new location x and the values at the sampled locations. To use this predictor, B̂ and θk must both be
found, as r and R depend on θk. The correlation vector is

r(x)T = [R(x,x1), . . . , R(x,xns)]. (6)

The unknown parameters θk are found using maximum likelihood estimation.7 This approach uses the
likelihood of the assumed Gaussian computer model with kriging parameters of θk given observations y.
This likelihood is defined as,

L(θk|y) =
e
−(y−fB̂)T R(θk)−1(y−fB̂)

2σ̂2

√
(2πσ̂2)ns |R(θk)| . (7)

It is more common to use the log of the likelihood for mathematical convenience, which simplifies Eq. (7) to

l(θk|y) =
−(y − fB̂)T R(θk)−1(y − fB̂)

2σ̂2
− ns ln(2πσ̂2) + ln(|R(θk)|)

2
(8)

By setting the derivatives of Eq. (8) with respect to both B̂ and σ̂2 to zero, a closed-form solution for the
optimal values of the trend function, B̂, and estimated variance, σ̂2, are found:

B̂ = (fT R−1f)−1fT R−1y, (9)

σ̂2 =
1
ns

(
(y − fB̂)T R−1(y − fB̂)

)
. (10)

Finally the correlation parameters, θk, are found by maximizing the log-likelihood function, known as the
maximum likelihood estimation (MLE) problem, which can be reduced to:

Maximize
θk

−ns ln(σ̂2)+ln(|R|)
2

subject to: 0 < θk ≤ ∞.
(11)

This is a nv dimensional optimization problem which is well posed. Notice that a kriging model can be built
for any values of θk; this optimization ensures the best choice for the θk values. In practice when solving
for θk, R may become badly scaled; this is overcome using various numerical techniques as described by
Lophaven et al.22,23

A. Constructing the Kriging Model Using a Quasi-Newton Method

To solve the MLE problem in Eq. (11), a gradient-based or local optimization approach can be used. The
main benefit of using such methods over stochastic ones is that they typically require many fewer function
calls to converge. These methods make no claim or attempt at finding global solutions, only local optima,
and have difficulty in large flat regions that may be occur in the likelihood function.
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For this study a Quasi-Newton Broyden24-Fletcher25-Goldfarb26-Shanno27 (BFGS) method is used in the
form of Matlab’s fminunc function. Quasi-Newton methods successively minimize a second-order model of
the objective function. The second-order information is approximated using successive gradient information
using the BFGS update.

B. Constructing the Kriging Model Using Pattern Search

In the DACE toolbox for Matlab developed by Lophaven et al.22,23 a pattern search method is used to find
the optimal kriging parameters. They specifically use the Hooke and Jeeves method, as described by Kowalik
and Osborne,28 using relative changes in the parameters instead of absolute changes. While this method
does not use gradient information directly, it is still a local optimization method. Pattern search methods
tend to be better suited for highly nonlinear or discontinuous functions, which may give this method an edge
over a gradient-based approach, but tend to be less efficient when the function is first-order continuous. The
pattern search will be compared to the gradient-based method (quasi-Newton) and the simulated annealing
approach, described next, in the numerical experiments.

C. Constructing the Kriging Model Using Adaptive Simulated Annealing

In order to provide a more robust optimization of the likelihood function than the gradient-based method,
given the multimodal and long near-optimal ridge features of the likelihood function, adaptive simulated
annealing (ASA) is used. Adaptive simulated annealing was developed by Ingber29–32 and is a more efficient
and more robust implementation of simulated annealing. Simulated annealing33 includes a temperature
schedule for efficient searching by Kirkpatrick et al.34 Other researchers have also independently developed
a similar method.35,36 Adaptive simulated annealing differs in the fact that typically fixed algorithmic pa-
rameters are allowed to adapt to each problem.

Simulated annealing, while more robust in finding the solution to the MLE problem, is also much more
expensive in terms of function calls as it is a Monte Carlo method.12 The expense of each function call in
constructing the kriging model involves finding the inverse and/or determinate of the correlation matrix.

D. Comparison Between Optimizers When Building a Kriging Model: 1D Example

Using a simple one-dimensional function allows for comparing the kriging models produced with the different
optimizers when solving the MLE problem. The sine function is used as the target function to be approxi-
mated. The kriging models are built using four sample points, x = {1.0, 1.05, 3.0, 3.05}, and y is the set
or responses of y(x) = sin(x). The initial starting point was taken to be θ0 = 5.5. This is not a very good
initial guess given the scale of the problem; however, this is just a demonstration of what could happen in
a larger problem where little is known about choosing a good initial point. Figure 2 shows the likelihood
function given the set of sample points. The figure shows the likelihood is very flat in the range θ = [1.5, 5.5]
with a local maximum near θ = 3 and a global maximum near θ = 0.4.

The resulting kriging models constructed using no optimization and the three different optimizers are shown
in Figure 3. The model that used no optimization produced the worst approximation, as expected. The two
local optimization methods, Quasi-Newton and pattern search, produced very similar approximations. The
best approximation of the sine function was produced by using the ASA optimizer.

In Table 1 the resulting value of θ from each optimization is given along with the final likelihood value
and the number of likelihood evaluations needed for convergence (L Evals). The results in the table show
that the two local optimizers converged to the local maxima, which is why their kriging models were simi-
lar. The ASA method converged to the global solution, giving a better approximation to the sine function.
However, the ASA method used orders of magnitude more likelihood evaluations to converge; so, the better
approximation was obtained at a much higher computational cost. The Quasi-Newton and pattern search
had similar numbers of likelihood evaluations. The Quasi-Newton optimizer required a few more evaluations

6 of 20

American Institute of Aeronautics and Astronautics Paper AIAA-2005-2057



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ

L(
θ|

y)
Inital θ

Pattern Search

Quasi−Newton

ASA

Figure 2. The likelihood function of the one dimensional example.

Table 1. Optimization Results for the One Dimensional Example

Optimizer θ L(θ|y) L Evals

None 5.50 0.4894 1
Pattern Search 3.09 0.5328 9
Quasi-Newton 2.97 0.5329 20
ASA 0.35 0.7190 364

because it used finite differencing to determine needed gradient information.

In this example if the starting point was a little better, for example around θ = 1, then all methods would
have converged to the same point, the global optima. The relative number of function evaluations would
have still been roughly the same; therefore, one would wonder why ASA should be used. This observation
raises an interesting point: can it somehow be gauged whether or not an initial starting point for θ is close to
the global optima? Then it would be possible to choose either a local optimizer or a global one to solve the
MLE problem in order to construct the best approximation using the least amount of likelihood evaluations.
This idea could be used in optimization algorithms where kriging models are built sequentially, as in variable
fidelity optimization, where only a few points are added to the sample space each time the kriging model is
reconstructed. It is also possible that no optimization is needed if the best θ values do not change much when
adding a few more samples. More rigorous frameworks are proposed in Section IV drawing from these ob-
servations. The next section describes the variable fidelity framework that uses the successive kriging models.

III. Variable Fidelity Optimization

The typical framework for variable fidelity optimization is depicted in Figure 4 and is based, in part, on
work done by Alexandrov37 and is fully described by Gano et al.6 This framework is designed to reduce the
number of high fidelity function calls during the optimization process by using a scaling function and lower
fidelity models. The following process describes the basic steps of the framework:
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Figure 3. One-dimensional example comparing the kriging models produced by the different optimization
methods.

Step 1 Initialization: The objective and constraints are evaluated using both the high and low fidelity
models at the starting design point, x0. Also an initial l1 penalty function is evaluated (see Step 5).

Step 2 Gradient Evaluation: The gradient of the objective and the Jacobian for the constraints are
evaluated using both the high and low fidelity models at the current design point, xn.

Step 3 Construct Scaling Model: A scaling model is constructed to insure matching between the fidelity
models. This model can be based on many different methods; additive and multiplicative are the most
common and are discussed in more detail later. Each method can be modeled as first order, second order,
or kriging-based. A scaling model is constructed for each constraint as well as for the objective function.

Step 4 Optimize Scaled Low Fidelity Model: The low fidelity model scaled with the scaling model
constructed in Step 3 is optimized. The choice of optimizer used is based on preference. In the work done
by Alexandrov,38 three optimizers were compared: augmented Lagrangian method, multilevel algorithms
for large-scale constrained optimization (MAESTRO)39 (used for coupled MDO problems), and sequential
quadratic programming (SQP). For typical single discipline problems, Alexandrov found SQP to be the most
promising, and it is used in this research. The unscaled constraints are included in this step to ensure that
they are always satisfied.

Step 5 Evaluate New Design and l1 Penalty Function: Using the resulting design point from Step
4, the high fidelity objective and constraints are evaluated. The objective and constraint values are used
to calculate a current value of the l1 penalty function, P, for the high and scaled low fidelity models. The
penalty function is defined as

P (x) = f(x) +
1
µn

∑
max(0, gi(x)) +

1
µn

∑
|hi(x)|, (12)

where µ is the penalty weight which is typically decreased by a factor of ten each time a new point is ac-
cepted. This penalty weighting drives all the active constraints to zero as the algorithm converges.

Step 6 Trust Region Management: In order to guarantee convergence of the variable fidelity optimiza-
tion framework, a trust region model management strategy is employed.40 This method provides a means for
adaptively managing the allowable move limits for the approximate design space. Originally these methods
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Figure 4. Varible fidelity framework flowchart.

were used to ensure the convergence of Newton-based methods.

A trust region ratio allows the trust region model management framework to monitor how well the approxi-
mation matches the high fidelity design space. After each completed optimization on the scaled low fidelity
model, a new candidate point, x∗n, is found. A trust region ratio, ρn, is calculated at this new point:

ρn =
P (xn)high − P (x∗n)high

P (xn)scaled − P (x∗n)scaled
, (13)

where P ()high and P ()scaled are the l1 penalty functions for the high and scaled low fidelity models and
the point xn was the initial point of the optimization. Notice that by definition P (xn)scaled = P (xn)high,
because the scaled low fidelity model matches the high fidelity model at that point. This is the ratio of
the actual change in the function to the predicted change of the function by the scaled lower fidelity model.
Because the constraints are also approximated, the trust region ratio must account for this and converge to
a feasible design, which is the reasoning behind using the l1 penalty function.
The trust region size is governed by the following standard rules:41,42

∆n+1 =





c1∆n : ρn ≤ R1 ∨ ρn > R3

∆n : R1 < ρn < R2

Γ∆n : R2 ≤ ρn ≤ R3

. (14)

where Γ = c2 if ‖x∗k − xck
‖∞ = ∆k otherwise Γ = 1. A typical set of values for the range limiting constants

are R1 = 0.25, R2 = 0.75, and R3 = 1.25, while the trust region multiplication factors are typically c1 = 0.25
and c2 = 3. Physically, ρ represents how good of an approximation our scaled low fidelity model is compared
to the high fidelity model. If ρ is near 1, the approximation is quite good. If ρ is near zero, then the
approximation is not as good, but it still captures the minimization trend. If ρ is negative, then the point
is a worse design. In this case the point is rejected, the trust region size is reduced by the factor c1, and
the algorithm returns to Step 4. As long as ρ > 0, the point is accepted and the algorithm proceeds to Step 7.

Step 7 Convergence Test: The convergence of the entire framework is governed by satisfying the Karush-
Kuhn-Tucker conditions as is shown by Rodŕıguez et al.43 and Conn et al .44 For the implementation used
in this research the convergence was determined by the following two inequalities:
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fhigh(xn)− fhigh(xn−1) < εf , and (15)
‖xn − xn−1‖ < εx, (16)

where εf and εx are tolerances supplied by the user, and n is the current iteration counter. If any of the
two inequalities at the current point is true, the algorithm is considered converged. If the convergence test
is true, then the final design is found; otherwise, the algorithm returns to Step 2.

A. Scaling Methods

Existing variable fidelity or approximate model management frameworks come in two varieties: multiplica-
tive or additive. Currently, the most common is the multiplicative framework, devised by Alexandrov and
Lewis45 based on Chang’s46 scaling function. The additive method was presented by Lewis and Nash.47

Both methods are based on constructing an unknown function to update the lower fidelity model, which in
turn, will approximate the higher fidelity model.

1. Multiplicative Scaling

A given set of high and low fidelity models, fhigh(x) and flow(x), can be matched by multiplying the low
fidelity model by an unknown function β(x), which is posed mathematically as

fhigh(x) = β(x)flow(x). (17)

This scaling model was first proposed and used for approximating structural response by Chang et al.46

Solving for the unknown multiplicative scaling function results in

β(x) =
fhigh(x)
flow(x)

. (18)

From inspection of Eq. 18, it is clear that the function β(x) is the scaling ratio of the high fidelity model
to the low fidelity model, and when it is multiplied by the low fidelity model, the value of the high fidelity
model is achieved.

2. Additive Scaling

A given set of high and low fidelity models, fhigh(x) and flow(x), can also be matched by adding the low
fidelity model to an unknown function γ(x). This is expressed mathematically as

fhigh(x) = flow(x) + γ(x). (19)

The additive scaling function can be solved for by subtracting the low fidelity function from both sides:

γ(x) = fhigh(x)− flow(x). (20)

From Eq. 20, it is clear that the function γ(x) is the additive scaling of the high fidelity model to the
low fidelity model, or the error between them. When this function is added to the low fidelity model, the
response of the high fidelity model is produced. A similar function for the constraints can be developed in
the same manner as Eqs. (19) and (20).
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B. Kriging-Based Scaling Models for Variable Fidelity Optimization

The scaling models developed in the first- and second-order approaches are only local to the current design
point and do not use past information. When using variable fidelity physics-based models, the low fidelity
model typically is a global model. Therefore, a global scaling function may be better at approximating the
high fidelity response. In this investigation a new kriging-based scaling function is developed to improve
the scaling between the different fidelity models on a more global scale. This approach allows the use of all
information calculated throughout the course of the optimization, even when the trust region ratio is less
than zero and the corresponding design point is rejected. The kriging model can be constructed for any type
of scaling function, for example, the additive or multiplicative methods already discussed.

The kriging model gives exact responses at sample points, as it is an interpolating function. This ensures that
at least first-order matching is obtained. With the inclusion of gradient information, first-order matching is
achieved. First-order matching combined with the trust region model management strategy provides for a
provably convergent framework.37

Building and rebuilding the kriging models takes extra time and memory storage; however, this added com-
putational time and resource expenditure may be negligible compared to the evaluation of the high fidelity
model. The method used to build the kriging models is described in the following section.

Another benefit of using a kriging-based scaling approach is that past data can be easily incorporated into
the scaling model to further increase the convergence rate. Often, a model is evaluated for various purposes
before an optimization is performed. These results can be included in the kriging model to improve its
matching capabilities.

IV. Metamodel Update Management Strategies For Sequentially Building
Kriging Models

This section discusses the update strategies used to reduce the cost of having to optimize the kriging model
parameters at each iteration of sequential approximation optimization (SAO) method-like variable fidelity
optimization. Both methods use some means to try to measure how good a kriging model is and if it should
be updated or not after new samples are included. The first method, L-MUMS, uses the likelihood value,
which is measured directly from the kriging model itself. The second method, TR-MUMS, uses the trust
region ratio value, which gives a measure of how well the approximation matches the true model.

A. L-MUMS

The likelihood value obtained from Eq.(7) when constructing a kriging model gives a measure of how likely
it is that the values used for the model parameters, θ, are the best values. To compare different kriging
models, a ratio of their likelihood values can be used. If, for instance, the optimal model parameters are
found for a set of data samples and then later a few more data samples are included, the new likelihood could
be compared to the previous value to determine if the same model parameters can be used. This assumes
that the inclusion of new data points does not significantly change the likelihood function.

To save computational cost of optimizing the kriging model parameters for each iteration of the variable
fidelity framework a likelihood ratio of the following form is proposed:

%n =
Ln(θn|yn)

Ln(θn|yn−1)
, (21)

where yn−1 is the data set of the previous kriging model update and yn is the current data set. If the
likelihood ratio is near unity then the model parameters do not need to be updated, but if the ratio indicates
a small change in likelihood a local optimization method starting from the current model parameters could
easily move to the new optima relatively inexpensively. On the other hand, if the likelihood ratio shows
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a large change in likelihoods after the new points have been included, then a stochastic optimizer (e.g.,
simulated annealing) might be required to account for the multi-modal behavior of the likelihood function.
This updating management scheme can be mathematically stated as:

Kn =





global : %n ≤ 1
A1
∨A1 < %n

local : 1
A1

< %n < 1
A2
∨A2 < %n < A1

none : 1
A2

< %n < A2

, (22)

where Kn is the optimization scheme used to determine the kriging model parameters for the nth iteration.
This scheme has only two parameters which need to be tuned, A1 and A2. For the first iteration the kriging
model parameters are found using any optimization approach.

B. TR-MUMS

An alternative approach to managing the updating of the kriging model parameters is to use the trust region
ratio, ρn defined in Eq. (13), that is already calculated in variable fidelity optimization as it is in most
SAO methods. The trust region ratio provides a measure of how well the approximation represents the true
model. It, therefore, can be used to estimate when the kriging model parameters need to be updated —
when the kriging model is producing a poor approximation. Unlike the likelihood ratio this method only
works after a bad approximation is produced and does nothing to determine if a kriging model is poor before
it is used. However, this approach is more physically intuitive and is simple. The update scheme, in its most
general form is as follows:

Kn+1 =





global : ρn ≤ A1

local : A1 < ρn < A2

none : A2 ≤ ρn ≤ A3

. (23)

The parameters A1, A2, and A3 do not necessarily have to correspond to the values used in updating the
trust region size in Eq. (14). This update scheme uses a global optimizer when the trust region ratio is far
from one, a local optimizer when the ratio is moderately close to one, and no update when the ratio is near
one. A simpler version of this scheme is one that only updates using a single optimizer. This reduces to a
simpler scheme as follows:

Kn+1 =

{
update : ρn ≤ A1

none : ρn > A1

. (24)

V. Numerical Experimental Procedure and Demonstration Problems

This section describes the numerical procedure used for evaluating the kriging model updating strategies.
The goal is to determine if such updating strategies can reduce the cost of building the kriging models over
the course of the optimization process without unduely increasing the number of iterations and high fidelity
function calls required for convergence. Two engineering design problems were used to study the kriging
update strategies: (1) an internal combustion engine sizing problem and (2) a control-augmented structure
design problem.

Three main steps were used to evaluate the management of updating the kriging model parameters. First,
the test problems were optimized using the variable fidelity method in which the kriging model parameters
were updated at each iteration; this was repeated using the various likelihood optimization methods. Sec-
ond, the variable fidelity framework was run using the the same kriging model parameters for the entire
optimization process. The fixed values for these parameters corresponded to using each of the likelihood
optimizers after the first iteration. These results allow for a comparison between always and never updating
the kriging model and to show how this affects the convergence of the variable fidelity algorithm. Finally,
the different MUMS were used and compared to the results from the first two studies.
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The two demonstration problems are described in the next two sections. Quadratic response surfaces48 were
used as the low fidelity objectives and constraints for both problems. The were generated using a high fidelity
Latin hypercube sampling49,50 using the number of design variables squared data points. The computational
costs of evaluating of the high and low fidelity models for the engine design problem were comparable and
are used solely to evaluate the savings of the kriging update schemes. For the control-augmented structure
problem the high fidelity model required 150 times the computational cost of the low fidelity model to eval-
uate.

A. Internal Combustion Engine Design

In this problem the geometry for a flat head internal combustion chamber is sought to provide maximal
specific power. The design must also satisfy a number of constraints including packaging, fuel economy,
and knock limitations. The problem was originally posed by the Ford Motor Corporation,51 and a robust
variation of the problem was solved by McAllister and Simpson.52 The engine analysis parameters were
determined by Ford’s Engine Assessment Model (ESA). A schematic for the flat head combustion chamber
is shown in Figure 5. The design variables for this problem are the cylinder bore b, the compression ratio
cr, exhaust value diameter dE , intake value diameter dI , and the revolutions per minute at peak power w.
The design problem is mathematically posed below.

minimize f = K0(ρQ
Af

ηtηv − FMEP )w (25)

subject to K1Ncb− L1 ≤ 0, [min bore wall thickness] (26)√
4K2V
πNcL2

− b ≤ 0, [max engine height] (27)

dI + dE −K3b ≤ 0, [valve structure] (28)
K4dI − dE ≤ 0, [min valve diameter ratio] (29)
dE −K5dI ≤ 0, [max valve diameter ratio] (30)

9.428× 10−5 4V
πNc

w
d2

I
−K6Cs ≤ 0, [max Mach index] (31)

cr − 13.2 + 0.045b ≤ 0, [knock-limited compression ratio] (32)
w −K7 ≤ 0, [max torque converter rpm] (33)

3.6× 106 −K8Qηtw ≤ 0. [fuel economy] (34)

The thermal ηt, volumetric ηv, and thermal at part load point efficiencies ηtw, are all functions of the de-
sign variables and are given in the original paper.51 The original paper also includes expressions for the
friction mean effective pressure (FMEP), density of the inlet charge ρ, lower heating value Q, air-to-fuel
ratio Af , number of cylinders Nc, displacement volume V , port discharge coefficient Cs, and the parameters
Ki, i = {0...12} and Li, i = {1, 2}. The starting and optimal designs are given in Table 2 along with their
respective objective function values.

Table 2. Starting and optimum designs for the internal combustion engine design problem.

Design Starting Optimum
Variable Design Design

b (mm) 75 83.33
cr (L/L) 6.42 9.45
dE (mm) 26 30.99
dI (mm) 39 37.34
w (rpm) 7500 6070

f (kW/L) 30.28 55.67

13 of 20

American Institute of Aeronautics and Astronautics Paper AIAA-2005-2057



Head Face

Top Dead Center

d
I

d
E

cr - 1
h =

s

b

s

Figure 5. Combustion chamber geometry.

B. Control-Augmented Structure Design

The control-augmented structure design problem shown in Figure 6 was introduced by Sobieszczanski-
Sobieski et al.53 The problem comprises a total of 11 design variables and 43 states. The physical problem
consists of a cantilever beam subjected to static loads along the beam and to a dynamic excitation force
applied at the free end. Two sets of actuators are placed at the free end of the beam to control both the
lateral and rotational displacement.

T T T

P=f(t)

A

B123

Figure 6. Cantilever beam with actuators.

The system analysis is comprised of two coupled contributing analyses as shown in Figure 7. The structures
subsystem, CAs, consists of a finite element model of the beam where the natural frequencies and modes of
the cantilever beam are computed. CAs requires, in addition to the characteristics of the beam, the weight
of the control system as input. The weight of the control system is calculated at the controls CA, CAc.
The weight of the control system is a function of the dynamic displacements and rotations of the free end of
the beam. These dynamic displacements and rotations are functions of the natural frequencies and modes
obtained in the structures CA, thus subjecting these CAs to coupling.

The objective of the optimization is to minimize the total weight of the system Wt, composed of the weight
of the beam Ws plus the weight of the control system Wc. The minimization is subjected to seven con-
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Figure 7. Dependency diagram of the Control-Augmented Structure design problem.

straints on the static stresses, lateral and rotational displacements, natural frequencies and dynamic lateral
and rotational displacements at the free end of the beam. The problem is posed as:

minimize Wt = Ws + Wc

subject to 1− dl
dla

≥ 0,

1− dr
dra

≥ 0,
ω1
ω1a

− 1 ≥ 0,
ω2
ω2a

− 1 ≥ 0,

1− σ
σa
≥ 0,

1− ddl
ddla

≥ 0,

1− ddr
ddra

≥ 0,

where dl is the static lateral displacement, dr is the static rotational displacement, ddl is the dynamic lateral
displacement, ddr is the dynamic rotational displacement, ω1 is the first natural frequency, ω2 is the second
natural frequency, and σ is the static stress. The subscript a stands for the allowed value. The optimum for
this problem is depicted in Table 3. The minimum weight, W = 1493.6 lbs occurs where 6 design variables
are at their bounds.

Table 3. Starting and optimum designs for the Controls-Augmented Structure problem.

Design Starting Optimum
Variable Design Design

b1 (in) 10.0 3.0
b2 (in) 10.0 3.0
b3 (in) 10.0 3.0
b4 (in) 10.0 3.0
b5 (in) 10.0 3.0
h1 (in) 10.0 13.85
h2 (in) 10.0 11.96
h3 (in) 10.0 9.78
h4 (in) 10.0 7.06
h5 (in) 10.0 3.75

c 0.01 0.06
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VI. Results

The results found from optimizing the two demonstration problems using the numerical procedure outlined
in the previous section are given in this section. An immediate observation was found when attempting to
solve the two problems using L-MUMS. It was observed that for problems with nonlinear design spaces larger
than a couple of design variables, the magnitude of the likelihood fluctuated by many orders of magnitude
when just a few additional samples were added; this violated the assumption from which the update method
was derived. This method caused the kriging model to be updated every iteration. Only the TR-MUMS
results are given in the numerical studies for this reason. It was, therefore, concluded that the proposed
likelihood ratio was not a good indicator of when to update the kriging model parameters.

A. Internal Combustion Engine Design Results

A summary of all of the results of optimizing the combustion chamber of an internal engine is given in
Table 4. The number of iterations, high fidelity function calls, low fidelity function calls, likelihood eval-
uations, and the number of times the kriging model parameters were updated are all summarized in the table.

The first section of Table 4 shows the results for the variable fidelity optimization when the kriging model
parameters were updated each iteration. For comparison, the number of function calls required to optimize
the problem using a standard SQP solver is also given at the bottom of the table, and for each case the
variable fidelity optimization requires fewer high fidelity function calls. The results show that updating the
kriging models using ASA actually resulted in a higher number of high fidelity function calls. This suggests
that the highest likelihood value may not always produce the best approximation. The number of low fi-
delity function calls was also higher using ASA. The largest difference between the results from updating
the kriging models each iteration is the number of likelihood evaluations required; ASA required two orders
of magnitude more evaluations than did the Quasi-Newton optimizer, which in turn required another order
of magnitude more evaluations than did the pattern search approach.

Table 4. Internal Combustion Engine Optimization Results

Optimizer Iter High Fn Calls Low Fn Calls L Evals θ Updates

θ updated every iteration
ASA 7 42 911 344,307 7
Quasi-Newton 6 31 308 8,668 6
Pattern Search 7 32 453 407 7
TR-MUMS (θ updated when ρn < 0.25)
ASA 7 42 698 56,701 1
Quasi-Newton 5 25 274 2,852 2
Pattern Search 5 25 462 118 2
θ updated once
ASA 7 42 698 56,701 1
Quasi-Newton 6 31 247 347 1
Pattern Search 5 25 364 62 1
Standard single fidelity optimization
SQP 9 64 - - -

The next study repeated the same problem setup but used the value of the kriging model parameters found
in the first iteration for the entire optimization process. These results are given in the third section of
Table 4. As expected, the number of likelihood evaluations for each method significantly decreased, but still
retained the same relative scale between the different optimizers. Unexpectedly, these results are not worse
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than when the kriging models were updated after each iteration. In some cases the results are even better.
This provides evidence that sequential optimization techniques, such as VFO, may have low sensitivity to
the values used in computing the kriging model and may not need to be updated as frequently. The pattern
search method actually converged faster than in the previous trial, while all three methods required fewer
low fidelity function calls. The unexpected result may be related to the theoretical findings of Lim et al.;54

they noted the kriging best linear unbiased predictor (BLUP) has special asymptotic properties when the
output of a computer model is highly correlated over the design space.

In the last trial the TR-MUMS was used. In this strategy the kriging model was updated using different
optimizers when the trust region ratio was below 0.25 (ρn < 0.25). The results are given in the second
section of Table 4. The results show a decrease in the number of high fidelity function calls using Quasi-
Newton and the pattern search approaches as compared to the initial study. The pattern search used the
same number of high fidelity function calls as in the second trial. Both of these methods updated the kriging
model parameters one extra time as compared to using the same kriging models for the entire optimization,
allowing for the improved performance; and as expected the number of likelihood function evaluations in-
creased accordingly but was still much less than updating the parameters after each iteration. These results
show that the TR-MUMS can decrease the cost of variable fidelity optimization.

B. Control-Augmented Structure Design Results

The computational expense of the optimization process using the different kriging model update schemes is
more closely studied using the control-augmented structures problem. The amount of computational time
required, wall time, was added to the summary of results for this problem which is given in Table 5. A high
fidelity function call required 1.5s to evaluate, the low fidelity model took 0.01s to evaluate, and to optimize
the kriging models, on average, took 3s and 900s for the pattern search and ASA approaches respectively.
Also, the Quasi-Newton optimizer was not used in this problem for finding the kriging models. This is done
without loss of generality because it is a local optimizer as is the pattern search and both had similar results
in the previous demonstration problem relative to ASA.

The first section of Table 5 shows the results when the kriging model parameters were updated each iteration.
The ASA approach used slightly fewer high fidelity function calls than did the pattern search, and it also
used fewer low fidelity function calls as well. The main difference between the two optimizers was in the
number of likelihood evaluations required. The ASA method used over a million likelihood evaluations; three
orders of magnitude more than the pattern search method. This huge difference of likelihood evaluations
is the reason the execution time for using ASA was much higher, even higher than performing standard
optimization on the high fidelity function alone. The ASA approach could have been less computationally
expensive than the standard SQP optimization if the computational cost of the high fidelity model was much
greater, as it would be in some engineering design problems.

The third section of Table 5 shows the results from using a single set of values for computing the kriging
approximation throughout the optimization process. In this case the variable fidelity optimization process
failed to converge to the optimal solution for both methods. The premature convergence was due to the fact
that the trust region size became too small, which is an indication that the kriging approximation became
unusable and needed to be updated. This result is contrary to the results found in the internal engine design
problem, showing that there is a need for updating the kriging model parameters during the VFO process.

The TR-MUMS scheme for updating the kriging model parameters converged to the optimal solution using
fewer than half of the number of kriging model updates than updating the model parameters every iteration.
The results are given in the second section of Table 5. The reduction in likelihood evaluations, however,
came at a cost of slightly increasing the number of high fidelity and low fidelity function calls; at least for
this problem. These results indicate that for problems in which the cost of updating the kriging model
parameters is significantly high relative to a high fidelity function call, the trust region ratio can be used as
a good indicator as to when the kriging parameters should be updated.
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Table 5. Control-Augmented Structure Optimization Results

Optimizer Iter High Fn Calls Low Fn Calls L Evals θ Updates Wall Time (s)

θ updated every iteration
ASA 12 123 1,573 1,070,000 12 11,013
Pattern Search 16 127 2,093 1,594 16 259
TR-MUMS (θ updated when ρn < 0.25)
ASA 14 125 1,894 410,009 5 4,706
Pattern Search 17 128 2,149 839 8 237
θ updated once
ASA* 17 117 1,430 100,016 1 1,090
Pattern Search* 35 333 4,214 140 1 545
Standard single fidelity optimization
SQP 26 340 - - - 510
* Did not converge to the optimum; the trust region size became too small.

VII. Summary, Conclusions, and Future Work

Optimizing the kriging model parameters can be computationally expensive, especially when the number
of design variables and/or sample points used are large. This cost could outweigh the benefits of using
kriging models as approximations in trust region managed sequential approximate optimization methods,
such as variable fidelity optimization which attempt to decrease the computational cost of simulation-based
design. In this paper an overview of the variable fidelity method was given along with basic kriging theory.
Then different ways of optimizing the kriging model parameters were compared. It was pointed out that the
likelihood function, which is the objective in determining the kriging model parameters, can be multi-modal
and have long flat ridges making it tough for local optimization methods such as Quasi-Newton or pattern
search to converge to the global optima. Global optimization approaches, like adaptive simulated anneal-
ing, have been used by researchers to address this problem. However, such methods required many orders
of magnitude more likelihood evaluations to converge. Two metamodel update management schemes were
proposed in this paper to reduce the cost of using kriging models that are sequentially updated. The first
scheme, L-MUMS, used likelihood ratios to determine when to update the kriging model parameters. The
second, TR-MUMS, used the trust region ratio value to determine when the kriging model was not doing an
adequate job of approximating the true model and needed to be updated.

Two engineering design problems were solved to study the sensitivity of the variable fidelity optimization
framework to different kriging model parameter updating schemes. The test problems included an inter-
nal engine combustion chamber sizing problem and a control-augmented structural design problem. It was
found that the the variable fidelity method was insensitive to what optimizer was used; in fact, the simulated
annealing optimizer required many more likelihood evaluations and did not improve performance. Local op-
timization methods like Quasi-Newton and especially the pattern search method performed well with many
fewer likelihood evaluations. It was also found that the likelihood ratio was not a good measure of when the
kriging model parameters need to be updated. However, the trust region ratio was found to be a good in-
dicator, and its use resulted in fewer kriging model parameter updates and a lower total cost of optimization.

Future work on metamodel update management schemes could include using an improved trend function
in the kriging model as recommended by Martin and Simpson.14 Using a non-constant trend function will
address the issues of multi-modality and long correlation ranges. The trend function itself will be able to
better model the long correlations, allowing the correlation function to model the shorter correlations, re-
sulting in reduced multi-modality of the likelihood function. It also results faster optimization of the MLE
problem when using gradient methods. Furthermore, work should be done on studying why the L-MUMS
was so ineffective. One possible improvement could be to use a method more like the likelihood ratio test,
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using the logarithm of the likelihood and the Chi-square test.
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