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Competitive marketplaces have driven the need for simulation based design optimiza-
tion to produce efficient and cost effective designs. However, such design practices are
typically deterministic and don’t take into account model uncertainties or manufacturing
tolerances. Deterministic designs may lie on failure driven constraints, resulting in de-
signs characterized by a high probability of failure. Reliability based design optimization
(RBDO) methods have been developed to obtain designs that optimize a merit function
while ensuring a target reliability level. Unfortunately, these methods are notorious for
the high computational expense they require to converge. There has been a considerable
effort to reduce the computational cost, many of these methods have used approximations
which are not guaranteed to converge to the optimal solution of the original high fidelity
problem. In this research variable fidelity methods are used to reduce the cost of RBDO.
Variable fidelity methods use a set of models with varying degrees of fidelity and computa-
tional expense to reduce the cost of optimization. The variable fidelity RBDO methodology
developed in this investigation is demonstrated on two test cases: a nonlinear analytic prob-
lem and a high-lift airfoil design problem. For each of these problems the proposed method
shows considerable savings for performing RBDO as compared with standard approaches.

Nomenclature

β() Multiplicative scaling function
βi Reliability index of the ith failure mode
∆ Trust region size
εf Objective function convergence tolerance
εx Design variable convergence tolerance
γ Additive scaling function
grc Reliability inequality constraints
U Standard normal random variables
V Vector of random variables
η Limit state parameters
θ Distribution parameters of the random variables V
gD Deterministic constraints
gR Failure drive or probabilistic constraints
p Parameters that are fixed in the design problem
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v Realization of the random variables V
x Design vector
xl Lower bound of the design vector
xu Upper bound of the design vector
W Hybrid weighting value
∇ Gradient operator
∇2 Hessian operator
ρ Trust region ratio
cd Sectional drag coefficient
cl Sectional lift coefficient
cm Sectional moment coefficient about the aerodynamic center
f Objective or merit function
fV(v) Joint probability density function (PDF) of V
ND Number of deterministic constraints
NR Number of failure driven or probabilistic constraints
P Probability of failure

Subscripts
m Number of design variables
n Current iteration number
scaled Scaled low fidelity value
t Target value

Superscripts
˜ Approximate function
T Transpose operator

I. Introduction

Designs produced by deterministic optimization are often on the boundary of one or more constraints.
Such designs leave no room for uncertainties such as those that may arise out of manufacturing tol-

erances, material property variations, or the unpredictability of external forces and loadings which may
result in catastrophic failure. To address this issue engineers have typically used worst case values for the
uncertain parameters; this leads to unnecessarily conservative designs. These designs are more expensive,
where expense is paramount in a competitive marketplace. Furthermore, to address unknown failure modes
safety factors have been traditionally used to further increase the robustness of designs. The approach of
using worst case values is also quite heuristic in nature and doesn’t guarantee that a design meets a desired
probability of failure specification. Reliability based design optimization (RBDO) methods have emerged to
solve such problems. Designs obtained using RBDO ensure that the probability of failure due to parameter
uncertainties is below a desired level.

Conventionally, researchers have formulated RBDO as a nested optimization problem referred to as the
double-loop method. This formulation is computationally expensive because of the two levels of optimiza-
tion required. The upper level optimization solves the standard design problem, while for each function
call a number of reliability analysis are performed; these are the inner optimization problems. Solving such
nested optimization problems can be cost prohibitive, especially for large scale high fidelity multidisciplinary
systems. Moreover, the computational cost associated with RBDO grows exponentially as the number of
random variables and the number of critical failure modes increase. To alleviate the high computational cost,
researchers have developed sequential RBDO methods. However, such techniques typically lead to premature
convergence and, hence, yield spurious optimal designs. In the research by Agarwal et al.,1,2 a new unilevel
formulation for performing RBDO was developed. The formulation provided for improved robustness and
provable convergence as compared to a unilevel variant given by Kuschel and Rackwitz.3 In this new unilevel
approach, the basic idea is to replace the inverse first order reliability method (FORM) by its first order
Karush-Kuhn-Tucker (KKT) necessary optimality conditions at the upper level optimization. This unilevel
method was shown to be computationally equivalent to the original nested optimization problem if the lower
level optimization problem is solved by satisfying the KKT necessary condition.
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RBDO, in general, is still relatively expensive when compared to deterministic optimization that doesn’t
account for design uncertainty. This expense has put limits on the types of problem to which it can be
applied. For instance, high fidelity simulation models which require considerable computational cost may
not be able to converge under design cycle time constraints. Attempts at reducing this cost have used
approximation models such as kriging4 and correction response surfaces.5 These methods, however, don’t
converge to the true optimal solution of the high fidelity system. In this research, variable fidelity methods
are used in conjunction with the double-loop method to reduce the computational cost of obtaining a reliable
design, while guaranteeing convergence to the high fidelity solution, provided a suite of fidelity models are
available. Variable fidelity methods have recently become more efficient and provide a framework for using
lower fidelity models to reduce computational cost.6–10 The basic concept in these methods is to reduce the
number of high fidelity function calls by using lower fidelity models and scaling functions that update the low
fidelity model to match the higher fidelity result. The bulk of the computational time is used for evaluating
the low fidelity model, while using limited high fidelity calls to ensure the scaling function is accurate.

In this paper an overview of RBDO is given along with brief details of the double-loop method, followed
by a description of the variable fidelity framework. Next the combined variable fidelity reliability based
design optimization (VF-RBDO) approach is detailed. This approach is then applied to two design problems
to demonstrate the computational savings. The problems include an analytic test problem and a higher-
dimensional high-lift airfoil design problem.

II. Deterministic Design Optimization

In solving a deterministic design optimization problem, the designer seeks the optimum values of design
variables for which a merit function is the minimum and the deterministic constraints are satisfied. A
standard form of the deterministic design optimization problem is:

minimize
x

f(x,p) (1)

subject to gR
i (x,p) ≥ 0, i = 1, .., NR, (2)

gD
j (x,p) ≥ 0, j = 1, .., ND, (3)

xl ≤ x ≤ xu, (4)

where x are the design variables and p are the fixed parameters of the optimization problem. gR
i is the ith

hard constraint that models the ith critical failure mechanism of the system (e.g., stress, deflection, loads,
etc). gD

j is the jth deterministic constraint due to other design considerations that are not affected by
parameters or variables that could be uncertain. The design space is bounded by xl and xu. The merit
function and the constraints are explicit functions of x and p.

A deterministic optimization formulation does not account for the uncertainties in the design variables and
parameters. Optimized designs based on a deterministic formulation are usually associated with a high
probability of failure because of the likely violation of certain hard constraints. This is particularly true if
the hard constraints are active at the deterministic optimum solution. In today’s competitive marketplace,
it is very important that the resulting designs are optimal as well as reliable. This is usually achieved by
replacing a deterministic optimization formulation with a reliability based design optimization formulation,
where the critical hard constraints are replaced with reliability constraints.

III. Reliability Based Design Optimization

In the last two decades, researchers have proposed a variety of frameworks for efficiently performing relia-
bility based design optimization. A survey of the literature reveals that the various RBDO methods can be
divided into two broad categories: double-loop methods and sequential methods. Both of these approaches

3 of 21

American Institute of Aeronautics and Astronautics Paper AIAA-2005-2135



make use of a reliability analysis technique to determine how reliable a given design is. These methods are
explained in the following sections.

Reliability based design methods tend to move optimal designs away from failure driven constraints so that
the uncertainties lead to a much lower chance of failure. This concept is shown pictorially in Figure 1. In
the figure, point A is a deterministic design that is located on a failure driven constraint. When uncertainty
is considered this single design point is replaced by a probability distribution of designs produced using the
design parameters of point A. This figure shows that a good deal of this distribution about point A is in the
failure domain. Point B with its respective probability distribution has a much lower chance of producing
designs that fail. RBDO locates designs, like point B, that have a given measure of reliability while also
trying to optimize an objective or cost function. In other words, RBDO methods attain the target reliably
while minimizing the tradeoff from the objective.

Failure Domain

x
1

x
2 gR=0

A

B

Figure 1. Reliability based optimization produce designs away from failure driven constraints.

A. Double Loop Methods for RBDO

Traditionally, the reliability based optimization problem has been formulated as a double loop optimization
problem. In a typical RBDO formulation, the critical hard constraints from the deterministic formulation
are replaced by reliability constraints, as in

minimize
x

f(x,p) (5)

subject to grc(V, ηηη) ≥ 0, (6)
gD

j (x,p) ≥ 0, j = 1, .., ND, (7)

xl ≤ x ≤ xu, (8)

where grc are the reliability constraints. They are either constraints on probabilities of failure corresponding
to each hard constraint or are a single constraint on the overall system’s probability of failure. In this paper,
only component failure modes are considered. It should be noted that the reliability constraints depend on
the random variables V and limit state parameters ηηη. The distribution parameters of the random variables
are obtained from the design variables x and the fixed parameters p. (See the section on reliability analysis
below.) grc can be formulated as

grc
i = Pti − Pi, i = 1, .., NR, (9)

where Pi is the failure probability of the hard constraint gR
i at a given design, and Pti is the target allowable

probability of failure for this failure mode. The probability of failure is usually estimated by employing
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standard reliability techniques. A brief description of standard reliability methods is given in the next
section. It has to be noted that the RBDO formulation given above (Equations (5)-(8)) assumes that the
violation of soft constraints due to variational uncertainties is permissible and can be traded off for more
reliable designs. For practical problems, design robustness represented by the merit function, and the soft
constraints could be a significant issue, one that would require the solution to a hybrid robustness and
reliability based design optimization formulation.

1. Reliability Analysis

Reliability analysis is a tool to compute the reliability index or the probability of failure corresponding to a
given failure mode or for the entire system.11 The uncertainties are modeled as continuous random variables,
V = (V1, V2, ..., Vn)T , with a known (or assumed) joint cumulative distribution function (CDF), FV(v). The
design variables, x, consist of either distribution parameters θθθ of the random variables V, such as means,
modes, standard deviations, and coefficients of variation, or deterministic parameters, also called limit state
parameters, denoted by ηηη. The design parameters p consist of either the means, the modes, or any first
order distribution quantities of certain random variables. Mathematically this can be represented by the
statements:

[p,x] = [θθθ,ηηη] , (10)
p is a subvector of θ. (11)

Random variables can be consistently denoted as V(θθθ), and the ith failure mode can be denoted as gR
i (V, ηηη).

In the following, v denotes a realization of the random variables V, and the subscript i is dropped without
loss of clarity. Letting gR(v, ηηη) ≤ 0 represent the failure domain, and gR(v, ηηη) = 0 be the so-called limit
state function, the time-invariant probability of failure for the hard constraint is given by

P (θθθ,ηηη) =
∫

gR(v,ηηη)≤0

fV(v) dv, (12)

where fV(v) is the joint probability density function (PDF) of V. It is usually impossible to find an analytical
expression for the above integral. In standard reliability techniques, a probability distribution transformation
T : Rn → Rn is usually employed. An arbitrary n-dimensional random vector V = (V1, V2, ..., Vn)T is mapped
into an independent standard normal vector U = (U1, U2, ..., Un)T . This transformation is known as the
Rosenblatt Transformation.12 This transformation is depicted in Figure 2. The standard normal random
variables are characterized by a zero mean and unit variance. The limit state function in U-space can be
obtained as gR(v, ηηη) = gR(T−1(u), ηηη) = GR(u, ηηη) = 0. The failure domain in U-space is GR(u, ηηη) ≤ 0.
Equation (12) thus transforms to

Pi(θθθ,ηηη) =
∫

GR(u,ηηη)≤0

φU(u) du, (13)

Failure Domain Failure Domain

Physical Space Normalized Space

b

V
1

V
2

U
1

U
2

grc=0
GR=0

MPP

Figure 2. Transformation of the failure domain to a normalize space makes it possible to locate the MPP.
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where φU(u) is the standard normal density. If the limit state function in U-space is affine, i.e., if GR(u, ηηη) =
αααT u + β, then an exact result for the probability of failure is Pf = Φ(− β

‖ααα‖ ), where Φ(·) is the cumulative
Gaussian distribution function. If the limit state function is close to being affine, i.e., if GR(u, ηηη) ≈ αααT u+β
with β = −αααT u∗, where u∗ is the solution of the following optimization problem,

min ||u|| (14)
subject to GR(u, ηηη) = 0, (15)

then the first order estimate of the probability of failure is Pf = Φ(− β
‖ααα‖ ), where ααα represents a normal to

the manifold (15) at the solution point. The solution u∗ of the above optimization problem, the so-called
design point, β-point or the most probable point (MPP) of failure, defines the reliability index βp = −αααT u∗

‖ααα‖ .
This method of estimating the probability of failure is known as the first order reliability method (FORM).11

In the second order reliability method (SORM), the limit state function is approximated as a quadratic
surface. A simple closed form solution for the probability computation using a second order approximation
was given by Breitung13 using the theory of asymptotic approximations as

Pf (θθθ,ηηη) =
∫

GR(u,ηηη)≤0

φU(u) du

≈ Φ(−βp)
n−1∏

l=1

(1− κl)−1/2, (16)

where κl is related to the principal curvatures of the limit state function at the minimum distance point u∗,
and βp is the reliability index using FORM. Breitung13 showed that the second-order probability estimate
asymptotically approaches the first order estimate as βp approaches infinity, if βpκl remains constant.

The first order approximation, Pf ≈ Φ(−βp), is sufficiently accurate for most practical cases. Thus, only
first order approximations of the probability of failure are used in practice. Using the FORM estimate, the
reliability constraints in Equation (9) can be written in terms of reliability indices as

grc
i = βi − βti , (17)

where βi is the first order reliability index, and βti = −Φ−1(Pallowi) is the desired reliability index for the
ith hard constraint. When the reliability constraints are formulated as given in Equation (17), the approach
is referred to as the reliability index approach (RIA).

It should be noted that the reliability analysis involves a probability distribution transformation, the search
for the MPP, and the evaluation of the cumulative Gaussian distribution function. To solve the FORM
problem (Equations 14-15), various algorithms have been reported in the literature.14 The solution typically
requires many system analysis evaluations. Moreover, there might be cases where the optimizer may fail to
provide a solution to the FORM problem, especially when the limit state surface is far from the origin in
U-space or when the case GR(u, ηηη) = 0 never occurs at a particular design variable setting.

In design automation it is not known a priori what design points the upper level optimizer will visit; therefore,
it is not known if the optimizer for the FORM problem will provide a consistent result. This problem was
addressed recently by Padmanabhan and Batill15 by using a trust region algorithm for equality constrained
problems. For cases when GR(u, ηηη) = 0 does not occur, the algorithm provided the best possible solution
for the problem through

min ‖u‖ (18)
subject to GR(u, ηηη) = c. (19)
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The reliability constraints formulated by the RIA are, therefore, not robust. RIA is usually more effective if
the probabilistic constraint is violated, but it yields a singularity if the design has zero failure probability.16

To overcome this difficulty, Tu et al.16 provided an improved formulation to solve the RBDO problem. In
this method, known as the performance measure approach (PMA), the reliability constraints are stated by
an inverse formulation as

grc
i = GR

i (ui
∗
β=βt

, ηηη) i = 1, .., NR. (20)

u∗i is the solution to the inverse reliability analysis (IRA) optimization problem

min GR
i (u, ηηη) (21)

subject to ‖u‖ = βti
, (22)

where the optimum solution ui
∗
β=βt

corresponds to MPP in IRA of the ith hard constraint. Solving RBDO
by the PMA formulation is usually more efficient and robust than the RIA formulation where the reliability
is evaluated directly. The efficiency lies in the fact that the search for the MPP of an inverse reliability
problem is easier to solve than the search for the MPP corresponding to an actual reliability. The RIA and
the PMA approaches for RBDO are essentially inverse of one another and would yield the same solution
if the constraints are active at the optimum.16 If the constraint on the reliability index (as in the RIA
formulation) or the constraint on the optimum value of the limit-state function (as in the PMA formulation)
is not active at the solution, the reliable solution obtained from the two approaches might differ.

Similar RBDO formulations were independently developed by other researchers.17–19 In these RBDO for-
mulations, constraint (22) is considered as an inequality constraint (‖u‖ ≤ βti), which is a more robust way
of handling the constraint on the reliability index. The major difference lies in the fact that in these papers’
semi-infinite optimization algorithms were employed to solve the RBDO problem. Semi-infinite optimization
algorithms solve the inner optimization problem approximately. However, the overall RBDO is still a nested
double-loop optimization procedure. As mentioned earlier, such formulations are computationally intensive
for problems where the function evaluations are expensive. Moreover, the formulation becomes impractical
when the number of hard constraints increase, which is often the case in real-life design problems. To alle-
viate the computational cost associated with the nested formulation, sequential RBDO methods have been
developed.

B. Sequential Methods for RBDO

Sequential RBDO methods include a variety of different approaches proposed by different researchers. Chen
and Du20 developed a decoupled sequential probabilistic design methodology. In this framework, the de-
terministic optimization and the reliability assessment are decoupled from one another. During each cycle,
a deterministic optimization problem is solved, followed by reliability assessment and a convergence check.
Chen et al.21 also developed a sequential RBDO methodology that was recently generalized for non-normal
distributions by Wang and Kodiyalam22 and extended for multidisciplinary systems by Agarwal et al.23 In
this methodology, the lower-level optimization is eliminated, and the MPP of failure corresponding to the
probabilistic constraints is estimated implicitly by using a nonlinear transformation based on the direction
cosines of the hard constraints at the mean values of the random variables. This methodology is shown
to be extremely efficient. However, for highly nonlinear limit state functions, the estimate of the MPP of
failure given by the nonlinear transformation might be very different from the actual MPP of failure, and
the framework may fail to converge to the true solution. The drawback of sequential RBDO methodolo-
gies is that a local optimum cannot be guaranteed. Such methodologies can lead to spurious optimal designs.

It has been noted that the traditional reliability based optimization problem is a nested optimization prob-
lem. Solving such nested optimization problems for a large number of failure driven constraints and/or
nondeterministic variables is extremely expensive. Researchers have developed sequential approaches to
speed up the optimization process and to obtain a consistent reliability based design. To address the issue
of obtaining spurious optimal designs, a new sequential optimization strategy for reliability based design is
developed in Agarwal et al.24
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At this point the ground work for doing RBDO has been described. The RBDO methods inherently have
a much higher computational cost than doing deterministic optimization. In order to make RBDO com-
putationally trackable for expensive problems, variable fidelity optimization methods are employed in this
investigation to reduce the computational cost. The ability to use such methods assumes that a suite of
fidelity models can be provided. In the next section variable fidelity methods are discussed.

IV. Variable Fidelity Optimization

The typical framework for variable fidelity optimization is depicted in Figure 3 and is based, in part, on
work done by Alexandrov25 and is fully described by Gano et al.6 This framework is designed to reduce the
number of high fidelity function calls by using a scaling function and lower fidelity models. The following
process describes the basic steps of the framework:
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Scaling ModelNew Design
 x

f
low
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n
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(x
n
)

Accept x
n

x
n*

      x
n

n+1      n

n+1      n

Figure 3. Varible fidelity framework flowchart.

Step 1 Initialization: The objective and constraints are evaluated using both the high and low fidelity
models at the starting design point, x0. Also an initial l1 penalty function is evaluated (see Step 5).

Step 2 Gradient Evaluation: The gradient of the objective and the Jacobian for the constraints are
evaluated using both the high and low fidelity models at the current design point, xn.

Step 3 Construct Scaling Model: A scaling model is constructed to insure matching between the fi-
delity models. This model can be based on many different methods; additive and multiplicative are the
most common and are discussed in more detail later. Each method can be modeled as first order, second
order, or kriging based. A scaling model is constructed for each constraint as well as for the objective function.

Step 4 Optimize Scaled Low Fidelity Model: The low fidelity model scaled with the scaling model
constructed in Step 3 is optimized. The choice of optimizer used is based on preference. In the work done
by Alexandrov,8 three optimizers were compared: augmented Lagrangian method, multilevel algorithms
for large-scale constrained optimization (MAESTRO)26 (used for coupled MDO problems), and sequential
quadratic programming (SQP). For typical single discipline problems, Alexandrov found SQP to be the most
promising, and it is used in this research. The unscaled constraints are included in this step to ensure that
they are always satisfied.

Step 5 Evaluate New Design and l1 Penalty Function: Using the resulting design point from Step
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4, the high fidelity objective and constraints are evaluated. The objective and constraint values are used
to calculate a current value of the l1 penalty function, P, for the high and scaled low fidelity models. The
penalty function is defined as

P (x) = f(x) +
1
µn

∑
max(0, gi(x)) +

1
µn

∑
|hi(x)|, (23)

where µ is the penalty weight which is typically decreased by a factor of ten each time a new point is ac-
cepted. This penalty weighting drives all the active constraints to zero as the algorithm converges.

Step 6 Trust Region Management: In order to guarantee convergence of the variable fidelity optimiza-
tion framework, a trust region model management strategy is employed.27 This method provides a means for
adaptively managing the allowable move limits for the approximate design space. Originally these methods
were used to ensure the convergence of Newton based methods.

A trust region ratio allows the trust region model management framework to monitor how well the approxi-
mation matches the high fidelity design space. After each completed optimization on the scaled low fidelity
model, a new candidate point, x∗n, is found. A trust region ratio, ρn, is calculated at this new point:

ρn =
P (xn)high − P (x∗n)high

P (xn)scaled − P (x∗n)scaled
, (24)

where P ()high and P ()scaled are the l1 penalty functions for the high and scaled low fidelity models and
the point xn was the initial point of the optimization. Notice that by definition P (xn)scaled = P (xn)high,
because the scaled low fidelity model matches the high fidelity model at that point. This is the ratio of
the actual change in the function to the predicted change of the function by the scaled lower fidelity model.
Because the constraints are also approximated, the trust region ratio must account for this and converge to
a feasible design. That is the reasoning behind using the l1 penalty function.
The trust region size is governed by the following standard rules:28,29

∆n+1 =





c1∆n : ρn ≤ R1 ∨ ρn > R3

∆n : R1 < ρn < R2

Γ∆n : R2 ≤ ρn ≤ R3

(25)

where Γ = c2 if ‖x∗k − xck
‖∞ = ∆k otherwise Γ = 1. A typical set of values for the range limiting con-

stants are R1 = 0.25, R2 = 0.75, and R3 = 1.25, while the trust region multiplication factors are typically
c1 = 0.25 and c2 = 3. Physically, ρ represents how good of an approximation our scaled low fidelity model
is compared to the high fidelity model. If ρ is near 1, the approximation is quite good. If ρ is near zero,
the approximation is not as good, but still captures the minimization trend. If ρ is negative, then the point
is a worse design. In this case the point is rejected, the trust region size is reduced by the factor c1, and
the algorithm returns to Step 4. As long as ρ > 0, the point is accepted and the algorithm proceeds to Step 7.

Step 7 Convergence Test: The convergence of the entire framework is governed by satisfying the Karush-
Kuhn-Tucker conditions as is done by Rodŕıguez et al.30 and Conn et al .31 For the implementation used in
this research the convergence was determined by the following two inequalities:

fhigh(xn)− fhigh(xn−1) < εf , (26)
‖xn − xn−1‖ < εx, (27)

where εf and εx are tolerances supplied by the user, and n is the current iteration counter. If any of the
two inequalities at the current point is true, the algorithm is considered converged. If the convergence test
is true, then the final design is found, otherwise, the algorithm returns to Step 2.
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A. Scaling Methods

Existing variable fidelity or approximate model management frameworks come in two varieties: multiplica-
tive or additive. Currently, the most common is the multiplicative framework, devised by Alexandrov and
Lewis32 based on Chang’s33 scaling function. The additive method was presented by Lewis and Nash.34

Both methods are based on constructing an unknown function to update the lower fidelity model, which in
turn, will approximate the higher fidelity model.

1. Multiplicative Scaling

A given set of high and low fidelity models, fhigh(x) and flow(x), can be matched by multiplying the low
fidelity model by an unknown function β(x). This is posed mathematically as

fhigh(x) = β(x)flow(x). (28)

This scaling model was first proposed and used for approximating structural response by Chang et al.33

Solving for the unknown multiplicative scaling function results in

β(x) =
fhigh(x)
flow(x)

. (29)

From inspection of Equation 29, it is clear that the function β(x) is the scaling ratio of the high fidelity
model to the low fidelity model, and when it is multiplied by the low fidelity model, the response of the high
fidelity model is achieved.

2. Additive Scaling

A given set of high and low fidelity models, fhigh(x) and flow(x), can also be matched by adding the low
fidelity model to an unknown function γ(x). This is expressed mathematically as

fhigh(x) = flow(x) + γ(x). (30)

The additive scaling function can be solved for, by subtracting the low fidelity function from both sides:

γ(x) = fhigh(x)− flow(x). (31)

From Equation 31, it is clear that the function γ(x) is the additive scaling of the high fidelity model to the
low fidelity model, or the error between them. When this function is added to the low fidelity model, the
response of the high fidelity model is produced. A similar function for the constraints can be developed in
the same manner as Equations (30) and (31).

3. Adaptive Hybrid Scaling - Combining Additive and Multiplicative Methods

In general, some suites of fidelity models are matched better using one method or the other or possibly some
linear combination of the two models, and there is no way to know this a priori. This section describes a
methodology that adaptively combines both types of scaling.

Combining both the multiplicative and additive scaling functions such that they still properly scale the low
fidelity model to match the high fidelity model requires the use of a weighted average of the two methods. The
weighted averaging maintains the Taylor series matching and, therefore, retains the convergence properties.
Using a weighting term, W, this sum is

fhigh(x) = Wflow(x)β(x) + (1−W) (flow(x) + γ(x)) . (32)
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To determine the value of W, a further condition must be enforced.7 proposes to use a previously evaluated
point to adjust the value of W such that the model passes through that point as well. The weighting function
then takes the value

W =
fhigh(xpp)− (flow(xpp) + γ(xpp))

flow(xpp)β(xpp)− (flow(xpp) + γ(xpp))
. (33)

In Equation 33 the current additive and multiplicative scaling functions are used along with any previous
point, xpp, where the high fidelity model was evaluated. There is some freedom in choosing the past point.
One option is to simply use the last accepted design point. However, for this work the nearest point is used.
The advantage of using the nearest point is that it could have been a design that was evaluated but rejected;
this would help keep the next iteration from moving in this undesired direction. A new weighting value can
be computed both for the objective and each constraint at each iteration. Updating these weights at each
iteration allows the framework to adapt to the best model for the current area of the design space.

B. First Order Scaling Methods

The different scaling functions must be approximated. In this section the first order approximations are
presented; a higher order method is presented in the next section. The first order multiplicative approxima-
tion model is found using Chang’s33 scaling function β(x). At a given design point, for example the current
design, this function is defined as

β(xn) =
fhigh(xn)
flow(xn)

. (34)

This scaling factor at any other point can be approximated using a Taylor series to first order:

β̃(x) = β(xn) +∇β(xn)T (x− xn). (35)

To evaluate this, the gradient information is needed and can be obtained by differentiating Equation 34,
resulting in

∇β(xn) =




flow(xn)
∂fhigh

∂x1

∣∣∣
x=xn

−fhigh(xn)
∂flow

∂x1

∣∣∣
x=xn

flow(xn)2

...
flow(xn)

∂fhigh
∂xm

∣∣∣
x=xn

−fhigh(xn)
∂flow
∂xm

∣∣∣
x=xn

flow(xn)2




, (36)

Therefore, a first order update on the low fidelity model is

fhigh ≈ β̃(x)flow. (37)

This model insures that at the initial design point, the updated low fidelity model matches the function and
the gradient of the high fidelity model. The identical process is done in order to scale each constraint.

The first order additive scaling method is similar to the first order multiplicative scaling method because
it tries to approximate the high fidelity model by applying a correction to the lower fidelity model. The
additive method was used by Lewis and Nash34 to solve multigrid problems but can be used more generally.

At a given design point, the additive scaling function has the value

γ(xn) = fhigh(xn)− flow(xn). (38)

This additive scaling factor at any other point can be approximated using a Taylor series to first order:

γ̃(x) = γ(xn) +∇γ(xn)T (x− xn). (39)
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Evaluating this requires gradient information which can be obtained by differentiating Equation 38. This
gives

∇γ(xn) = ∇fhigh(xn)−∇flow(xn). (40)

Therefore, a first order update on the low fidelity model is

fhigh(x) ≈ flow(x) + γ̃(x). (41)

This model insures that at the current design point, the updated low fidelity model matches both the func-
tion and the gradient of the high fidelity model exactly, which is required for proof of convergence. Nearby
points should also approximate the high fidelity response well.

C. Second Order Scaling Models

Using the same idea as in the first order method, an approximation scaling function can be derived to match
second order information. This approach was first used by Gano et al.10 and Eldred et al.7 using both
second order information and approximate second order information. The approach is analogous to the first
order method except the Taylor series approximation is expanded to include the second order terms as the
name implies. The result for the multiplicative method is

β̃(x) = β(xn) + ∆xT∇β(xn) +
1
2
∆xT∇2β(xn)∆x. (42)

Using the same gradient result as in the first order method, the only remaining term needed is the Hessian
of β; this can be found by differentiating again, which simplifies to:

∇2β(xn) =




h1,1 h1,2 · · · h1,m

h2,1
. . .

...
...

. . .
...

hm,1 · · · · · · hm,m




, (43)

where

hi,j =
1

f3
low

(
2fhigh

∂flow

∂xi

∂flow

∂xj
+ f2

low

∂2fhigh

∂xi∂xj
− flow

(
∂flow

∂xj

∂fhigh

∂xi
+

∂fhigh

∂xj

∂flow

∂xi
+ fhigh

∂2flow

∂xi∂xj

))
,

(44)

where all the functions and partial derivatives are evaluated at the point xn and i and j are the indices for
the Hessian matrix which run from 1 to the number of design variables.

For the additive method, the second order expansion is

γ̃(x) = γ(xn) + ∆xT∇γ(xn) +
1
2
∆xT∇2γ(xn)∆x. (45)

The first order information was derived in the previous section. Again, the only remaining information
needed is the Hessian of γ; this can be found by taking the gradient of the gradient of γ:

∇2γ(xn) = ∇2fhigh(xn)−∇2flow(xn). (46)

The scaling functions have the same form as those in the first order methods and can similarly be computed
for the constraints as well as the objective function. Computing the symmetric full rank Hessian matrices
of either of the second order methods would be quite expensive, even if gradient information was readily
available.

12 of 21

American Institute of Aeronautics and Astronautics Paper AIAA-2005-2135



1. Approximate Second Order Scaling

The second order information that is needed in both second order techniques can be very costly to compute.
There exist techniques to approximate the second order information from first order information, which is
calculated at each iteration of the variable fidelity optimization process. In this investigation the second
order information can, therefore, be obtained at no additional cost, in terms of function calls, compared to
the first order scaling methods. The two most prevalent methods used are the Broyden-Fletcher-Goldfarb-
Shanno35–38 (BFGS) update and the symmetric-rank-1 (SR1) update.

V. Reliability Based Design Using Variable Fidelity Optimization

This section describes how the variable fidelity framework is used to reduce the computational expense of
high fidelity reliability based design. This combined method will be henceforth referred to as variable fidelity
reliability based design optimization (VF-RBDO).

Combining these two methods is a straightforward process; though, combining the two methods is a novel
approach to lower the cost of RBDO. The variable fidelity framework is setup to do deterministic opposed
to reliability optimization, which differ mainly in their formulation. In the reliability case the upper level
constraints, which insure a specific level of reliability is attained, involve a sub-optimization process of finding
the MPP for each of the deterministic constraints. The objective function is not typically altered, unless a
robust design formulation is desired. Therefore, the objective function and the upper level constraints can
be included into the variable fidelity framework directly as long as there exist at least two levels of fidelity
models used in computing the system responses. A diagram for combining these two methods is given in
Figure 4.

VF Optimizer

HF
Obj.

LF
Obj.

HF
Const.

LF
Const.

HF
Find the

MPP
(Pre Const.)

LF
Find the

MPP
(Pre Const.)

... ...

RBDO Formulation

May Use Robust Formulation

Figure 4. VF-RBDO framework

Another emerging RBDO method is to remove the the sub-optimization problems of finding the MPP for
each constraint by instead including their first order Karush Kuhn Tucker conditions at the top level. By
removing the nested optimization calls these methods have been shown to reduce the computational expense
of RBDO.1,2 However, these methods increase the number of design variables significantly while also making
the design space itself much more complicated by including many equality constraints. This complication
may be augmented by using constraint relaxation methods such as homotopy39 or by using approximations to
solve the infeasible trust region problem.40 Furthermore, unilevel methods require second order information
which can be approximated. Because second order information is typically not available, using approximate
second order information may hinder the convergence properties of the variable fidelity method. Combining
the unilevel RBDO methods and the variable fidelity method would follow the same procedure as described
above.
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VI. Numerical Implementation Studies

To demonstrate the savings of using the VF-RBDO method it was applied to two problems. The first problem
is a specific analytic problem referred to as the Barnes Problem. This problem will provide verification of
the method and is two-dimensional for easier solution visualization. The second problem is an airfoil shape
optimization problem that is subject to an uncertain Mach number and angle of attack. This problem is
similar to problems used by Padula et al.41–43 for robust design. To compute the aerodynamic forces on the
airfoils, various fidelity computational fluid dynamics (CFD) simulations are used.

A. Analytic Two Dimensional Problem

In order to help visualize the VF-RBDO methodology an analytic two-dimensional problem is solved first.
The problem is known as the Barnes problem as it was originally formulated in his master’s thesis.44 It is a
highly nonlinear problem which makes it a challenge to solve, even though it has only two design variables.
The original formulation of the problem was deterministic. Agarwal and Renaud45 recast the problem as
a reliability problem and renamed this formulation the Modified Barnes Problem. This modified version
is used as the high fidelity model in this research. The problem has four random variables, V, which are
statistically independent and normally distributed. The means and standard deviations for these random
variables are given in the problem formulation below. Two of the three constraints for this problem are
failure driven, gR. The remaining constraint, gD, is deterministic. The optimization problem is posed as
follows.

minimize
x1,x2

f(x) = a1 + a2x1 + a3x
2
2 + a4x

3
1 + a5x

4
1 + a6x2 + a7x1x2 + a8x

2
1x2 + a9x

2
1x2

+a10x
4
1x2 + a11x

2
2 + a12x

3
2 + a13x

4
2 + a14

x1+1 + a15x
2
1x

2
2 + a16x

3
1x

2
2 + a17x

3
1x

3
2

+a18x1x
2
2 + a19x2x

3
2 + a20e

a21x1x2

subject to: gR
1 = x1x2

v1
− v2 ≥ 0

gR
2 = x2

v3
+ x2

1
v2
4
≥ 0

gD = (x2
50 − 1)2 − ( x1

500 − 0.11) ≥ 0
and 0 ≤ x1 ≤ 75

0 ≤ x2 ≤ 65
where v1 = N(700, 1), v2 = N(1, 0.3), v3 = N(5, 1), v4 = N(25, 0.3)

The coefficients of the objective function are given in Table 1. The RBDO formulation for this problem is

minimize
x1,x2

f(x)

subject to: grc
i = βi − 3 ≥ 0, i = 1, 2

gD ≥ 0
and 0 ≤ x1 ≤ 75

0 ≤ x2 ≤ 65 .

Table 1. Coefficients for the Barnes problem.

a1 7.5196E1 a2 -3.8112E0 a3 1.2694E-1 a4 -2.0567E-3 a5 1.0345E-5

a6 -6.8306E0 a7 3.0234E-2 a8 -1.28134E-3 a9 3.5256E-5 a10 -2.2667E-7

a11 2.5645E-1 a12 -3.4604E-3 a13 1.3514E-5 a14 -2.8106E1 a15 -5.2375E-6

a16 -6.3000E-8 a17 7.0000E-10 a18 3.4054E-4 a19 -1.6638E-6 a20 -2.8673E0

a21 5.0000E-4

A low fidelity version of this problem is created by making a few changes to the problem which significantly
alter the design space. In the objective function two coefficients, a5 and a21, are set to zero, reducing the
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nonlinearity of the model. Also the first two constraints are altered, including a change of three mean values
of the random variables. These modifications are summarized below.

a5low = 0, a21low = 0

gR
1low =

x1x2

v1low
− v2low ≥ 0, gR

2low =
x2

v3
+

x1

v2
4low

≥ 0

v1low = N(750, 1), v2low = N(0.5, 0.3), v4low = N(4, 0.3)

Figure 5 shows the design spaces for both the high and low fidelity models. The high fidelity constraints are
also shown in the low fidelity model for easier comparison. The high fidelity model has four local minima
while the low fidelity model has only two; these points are represented in the figure by circles. The objective
function contours of the two models have significant differences in value and in orientation. One would hope
that in practice the low fidelity model would be a better match; however, this demonstration problem shows
the robustness of the variable fidelity methodology.
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Figure 5. High and low fidelity design spaces of the Barnes Problem.

In both implementation studies, different variable fidelity scalings and models are compared for use in re-
liability based design optimization. These results are also compared using a standard sequential quadratic
programming (SQP) method to solve the RBDO problem. Matlab’s fmincon46 was used as the SQP solver.
The different variable fidelity scaling methods used were the multiplicative, additive, and adaptive hybrid.
Furthermore, for each scaling the first order and quasi-second order methods using BFGS and SR1 were com-
pared. All of the trials were started at the point x = [40, 30]T with an initial trust region size of ∆0 = 10.
The results are summarized in Table 2.

All of the methods compared in Table 2 converged to the same solution. The objective of using these methods
was to reduce the number of high fidelity function calls. Comparing the high fidelity function calls required
for convergence between the standard SQP RBDO method and all of the VF-RBDO methods shows a signifi-
cant savings. The 1st order multiplicative method performed the worst in this case; though, it still used 26%
fewer high fidelity calls. The highest savings was obtained using the 2nd order additive method using the SR1
update to approximate the Hessian information, and it achieved a 71% reduction in high fidelity calls. All of
the second order methods out-performed the first order methods. The adaptive hybrid method seemed to se-
lect the better of the two methods but didn’t perform better than either one. One other factor that should be
noticed when comparing these methods is that there was a much larger number of low fidelity function calls
for the multiplicative method and the second order hybrid method. This could play a important factor, de-
pending on the relative costs between the suite of fidelity models, so it is further studied in the next problem.
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Table 2. VF-RBDO double-loop PMA results for the modified Barnes problem.

Method HF Fn Evals LF Fn Evals Iters
Multiplicative Scaling
1st Order 952 5580 12
2nd Order, BFGS 489 9571 7
2nd Order, SR1 442 5465 6
Additive Scaling
1st Order 440 4439 7
2nd Order, BFGS 405 3001 6
2nd Order, SR1 377 3001 6
Adaptive Hybrid Scaling
1st Order 481 3981 7
2nd Order, BFGS 409 6477 6
2nd Order, SR1 390 6590 6
RBDO SQP 1295 - 9

B. Energy Efficient Transport High-Lift Airfoil Design

For about two decades, starting in the mid 1970s, the National Aeronautics and Space Administration
(NASA) conducted research to improve the efficiency of jet transport aircraft. Part of this research effort
included the energy efficient transport program, which developed supercritical airfoils with larger section
thickness-to-chord ratios, higher aspect ratios, higher cruise lift coefficients, and less swept wings. Because
these wings had higher lift at cruise they could be smaller and more fuel efficient. With the reduced wing
area, these new wings needed a high-lift flap system to ensure that takeoff and landing requirements could
be met.

The problem solved here is: given a high-lift airfoil, find the optimal placement of its slat, vane, and
flap to provide maximum lift for takeoff or landing configurations. The problem was developed from the
experimental and numerical work done at NASA Langley.47–49 The problem consists of nine design variables
which control the horizonal, vertical, and rotational orientation of the slat vane and flap relative to their cruise
configuration. The rotation is measured positive counter-clockwise about each control surface’s leading edge.
Figure 6 shows the layout of the multi-element supercritical airfoil in both cruise and high-lift configurations.
Figure 6 also shows the three degrees of freedom the control surfaces can move. Two failure driven constraints
were placed on the lift to drag ratio and on the moment produced by the airfoil configuration. A deterministic
constraint was placed on the distance, or gap, between the elements for gridding purposes. The deterministic
design problem is formulated below.

maximize
x

cl

subject to: cl

cd
≥ 85

cm ≤ 0.65
gaps ≥ 1× 10−6

The flow conditions for the problem consisted of a Reynolds number of 9 million, a Mach number of 0.3, and
an angle of attack 3 degrees. For the RBDO problem formulations the Mach number and angle of attack
were considered as random variables. The lift, drag, and moment coefficients are all functions of the 9 design
variables and of the Mach number and angle of attack. The deterministic values of Mach number and angle
of attack are taken to be their mean values with both being normally distributed with variances of 5% of
their respective mean values.
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Figure 6. Cruise and high-lift configurations for EET airfoil.

The flow was solved using the inviscid Euler’s equations for the low fidelity model. The grid consisted of
about 45,000 elements, as seen in Figure 7a, which extended to 30 times the chord length in each direction.
For the high fidelity model, a full Navier-Stokes solution was used; the grid consisted of about 100,000 el-
ements as seen in Figure 7b. The CFD runs took approximately 9 minutes and 2.5 hours for the low and
high fidelity models respectively. To further reduce the computation expense of the low fidelity model, a
kriging-surrogate was created, reducing the expense to approximately a second. It should also be noted
that a surrogate was created and used for the high fidelity model for the purpose of reducing the cost to a
tractable level for demonstration purposes, which follows from the work done by Alexandrov.8

(a) Low fidelity - inviscid, approximately 45,000 elements

(b) High fidelity - viscid, approximately 100,000 elements

Figure 7. Close up view of the high and low fidelity unstructured CFD grids used in the AEET problem.

Both fidelity models were solved using a computational fluid dynamics package developed at NASA Langley
called FUN2D.50,51 This package uses fully unstructured mesh, which was generated using the advancing-
front local-reconnection method described by Marcum.52,53
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In comparing the various VF-RBDO methods the main goal is to reduce the number of high fidelity function
calls and ultimately the total time needed to find an optimal design. For each case the total of high and low
fidelity function calls were tallied along with an estimate of computational expense required. This compu-
tational expense, or relative cost, was calculated using a weight of 2.5 time units for a high fidelity function
call and 0.15 units per low fidelity function call. The precise computational expense couldn’t be determined
because of the use of the kriging models in place of the true CFD models. The results from the VF-RBDO
double loop method using PMA and various variable fidelity methods are given in Table 3. The table also
includes the results from a standard RBDO method using just the high fidelity model.

Table 3. VF-RBDO double-loop PMA results for the AEET problem.

Method HF Fn Evals LF Fn Evals Iters Rel Cost
Multiplicative Scaling
1st Order 228 3726 23 1129
2nd Order, BFGS 163 5300 14 1203
2nd Order, SR1 178 6506 17 1421
Additive Scaling
1st Order 256 3774 27 1206
2nd Order, BFGS 152 5298 13 1175
2nd Order, SR1 138 4592 12 1034
Adaptive Hybrid Scaling
1st Order 183 2969 16 903
2nd Order, BFGS 144 5538 15 1191
2nd Order, SR1 105 3200 10 743
RBDO SQP 1932 - 25 4830

The initial design is shown in Figure 8a and has a lift coefficient of 2.11. The deterministic solution has a lift
coefficient of 2.69 while the reliable design, shown in Figure 8b, has a lift coefficient of 2.51. All of the trials
converged to the same solution. The results given in Table 3 show that the variable fidelity methods have
significantly reduced the relative computational cost of design compared to the standard SQP approach. All
of the 2nd order methods reduced the number of high fidelity function calls but had mixed results when
comparing the overall relative costs. Multiplicative 2nd order and the hybrid second order BFGS methods
were more expensive because of a large increase of low fidelity function calls required. If the computational
cost gap were increased, the 2nd order methods would have become much more efficient in all cases. The
adaptive methods performed the best overall; they had a lower cost than either of the multiplicative or
additive methods for the 1st order and 2nd order SR1 scalings. The highest savings came from the hybrid
2nd order SR1 scaling. This method reduced the relative cost of finding a reliable design by 85%.

VII. Summary and Conclusions

Compared with standard deterministic design optimization methods, reliability based design problems tend
to greatly increase the computation time and expense required to reach a converged solution. In this research
variable fidelity methods were used to reduce the cost of reliability based design optimization. This com-
bined variable fidelity reliability based design optimization approach was compared to standard reliability
optimization using two design problems: a nonlinear analytic problem and a high lift airfoil design problem.
In both of the demonstration problems the number of high fidelity function calls required was significantly
reduced using VF-RBDO.

Many different types of scaling options exist when using the variable fidelity approach. There are two
main types of scaling functions, multiplicative and additive, which can be combined into an adaptive hybrid
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(a) Initial design (b) Reliable optimum design

Figure 8. Initial and reliable optimum design configurations of the AEET.

method. Each of these scaling types can be approximated using first order or second order methods. In
computing the Hessian, the second order methods use variable metric methods, BFGS and SR1, to reduce
the computational expense. All of these options were also compared in the two demonstration problems.
The second order variable fidelity scaling methods required a smaller number of high fidelity function calls
compared to the first order models, but a penalty of an increase in low fidelity function calls was observed in
some cases. The computational increase in low fidelity calls is usually offset by the savings in the high fidelity
evaluations, but it is mainly dependent on the cost ratio between the two fidelity models. The results indicate
that the additive method performs better than the multiplicative scaling for RBDO. The adaptive hybrid
method was efficient at selecting the appropriate method without the designer having to select between the
two scaling methods. In the airfoil design case the hybrid method actually had improved performance over
either additive or multiplicative alone; however, these results are not be true in general.

In conclusion, the VF-RBDO combined methodology has been shown to reduce the computational cost of
performing reliability based design. The method requires a set of fidelity models and is most efficient when
the relative cost between the models is large. Additionally, the variable fidelity and reliability based methods
are easily combined.
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