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ABSTRACT
The goal of this research is to obtain the optimum design

of a new interbody fusion implant for use in lumbar spine fixa-
tion. A new minimally invasive surgical technique for interbody
fusion is currently in development. The procedure makes use of
an interbody implant that is inserted between two vertebral bod-
ies. The implant is packed with bone graft material that fuses
the motion segment. The implant must be capable of retaining
bone graft and supporting spinal mechanical loads while fusion
occurs. Finite element-based optimization techniques are used
to drive the design. The optimization process is performed in
two stages: topology optimization and shape optimization. Four
independent load conditions are analyzed: compression, flexion,
extension, and lateral bending. The resulting optimal geometries
for each load condition are superimposed to generate an opti-
mum design that is converted to a candidate implant geometry
suitable for manufacturing.

NOMENCLATURE
xe Design variable.
ρ0 Original density of the material.
E0 Original Young’s modulus of the material.
ρe Density of the element.
Ee Young’s modulus of the element.
e Element number subscript.

∗Graduate Research Assitant.
†Professor, ASME Fellow
‡Associate Professor, ASME Member

N Number of (finite) elements.
p Penalization power.

FG Global node force vector.
UG Global node displacement vector.
KG Global stiffness matrix.
V Total potential energy.
U Internal portential energy.
Ω External potential energy.
ue Element node displacement.

ke Element stiffness matrix.
M Total mass.
f Objective fuction.
xmin Lower limit for the design variable.
xmax Upper limit for the design variable.
k0 Original element stiffness matrix of the material.
q Ratio between Emin and E0.
Emin Minimum value allowed for Young’s modulus.
σ̂ Von Mises stress.
S f Fatigue stress.

INTRODUCTION
Lower back pain is one of the most common and significant

musculoskeletal problems in the world. It has been estimated
that 80% of Americans will experience lower back pain in their
lifetime. Currently there are 600,000 surgeries performed per
year in USA, with a 50% of failure rate. This high failure rate
has motivated the development of new surgical procedures that
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are less invasive and more successful. One of the leading causes
of lower back pain is related to disc disorders. Spinal discs are
located between each vertebra in the spine and are designed to
act as shock absorbers within the spine. In some cases, with
time, they deteriorate and lose their shock absorbing capabilities
causing pain in the spine and/or vertebra. Figure 1 depicts some
disc disorders that can occur in the spine.

Figure 1. DISC DISORDERS

For many disc disorders it is difficult to treat them through
non-surgical methods. The most common surgical practice to al-
leviate the pain associated with these disorders is lumbar fusion.
The objective of this technique is to eliminate the relative move-
ment across a motion segment of the spine, or a series of motion
segments, that have degenerated to the point of causing pain.

Lumbar spinal fusion involves the use of bone graft material
and fixation instrumentation to prevent motion in the painful ver-
tebral segment. The bone graft grows between the two vertebral
bodies and fuses the motion segment. Spine surgery instrumenta-
tion like plates, rods and cages are used to provide fixation as part
of the fusion surgery process. There are several types of spinal
fusion surgery options described in literature [1]. The research
presented in this investigation relates to a new surgical procedure
for lumbar spine fixation that is currently in development. The
new minimally invasive surgical procedure involves the use of a
novel interbody fusion implant. The function of this implant is to
house the bone graft material while insuring structural stability
of the motion segment, while the bone graft heals. The healing
process can take several months.

Our goal in this work is to obtain the optimal geometry of

the interbody fusion implant. One wants to maximize the vol-
ume available for bone graft material within the implant, while
supporting the structural loads imposed on the system. The opti-
mization process is performed in two stages. The first stage seeks
to minimize strain energy under mass fraction constraints using a
topology optimization technique. The second stage seeks to min-
imize mass under stress constraints using a shape optimization
technique. GENESIS, a finite element-based optimization soft-
ware, is used to drive the optimum design. Increasingly, topology
optimization is being used to find preliminary, sometimes com-
pletely innovative, structural configurations that meets specific
conditions (i.e. objective function and constraints). Shape opti-
mization is used to tune the preliminary design using a more de-
fined geometry. The automotive industry regularly uses topology
and shape optimization software tools for the design of innova-
tive structures.

FINITE ELEMENT-BASED OPTIMIZATION
Finite element-based optimization techniques were first de-

veloped by UCLA Professor, Lucien Schmit in the 1960s. He
recognized the potential of combining optimization techniques
with finite element analysis for structural design. Today, three
types of finite element-based optimization approaches are of-
ten available within commercial FEA software: sizing, shape
and topology optimization. These approaches for structural opti-
mization are differentiated by the use of different design variable
types.

Sizing optimization
Sizing or parameter optimization typically uses element

cross-sectional properties as design variables [2]. These include
parameters such as plate thickness, area and moment of inertia
of a beam cross section.

Shape optimization
Shape optimization involves determining the optimal profile

(i.e. boundary) of a structural component. In this technique the
grid is perturbed in order to find its optimum shape. The design
variables are related to the amount of deformation. Approaches
to shape optimization include: basis vector and grid perturbation
approach.

Basis vector approach This approach requires the def-
inition of several trial designs call basis vectors. The design vari-
ables are the weight parameters that define the participation of
each basis vector in the design process.

Grid perturbation approach This approach requires
the definition of vectors to define the direction of a perturbation
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in the grid. The design variables are the values that determine the
amount of the perturbation in the design process.

Basis and perturbation vectors can be automatically gener-
ated in programs like GENESIS [3]. The technical challenge as-
sociated with this approach is the mesh parameterization. Specif-
ically, how do we relate the displacement of the grid during the
perturbation. Figure 2 depicts a perturbation over a square grid,
and illustrates how the mesh is parameterized to create a new
smooth grid.

(a) (b)

Figure 2. (a) ORIGINAL GRID (b) PERTURBED GRID

Topology optimization
Topology optimization involves the optimal distribution of

material within a structure. Unlike shape and sizing optimiza-
tion, topology optimization does not require an initial design.
Typically, the design process starts with a block of material called
the design domain. The design domain is comprised of a large
number of candidate elements, and the topology optimization
process selectively removes from the domain those unnecessary
elements. The design variables in topology optimization depend
on the type of material model used in the finite element analysis.
There are two general approaches: density and homogenization.

Density approach In the density approach, presented
by Bendsøe [4], the design variables xe are the element relative
densities or volume fraction (fraction of solid material). The ma-
terial model, for each finite element, is based on heuristic rela-
tionships between design variables and material properties (i.e.
density and Young’s modulus). Simple relationships that have
been used, are

ρe = xeρ0 (1)

Ee = (xe)
pE0, (2)

where xe is the design variable, ρ0 and E0 are the original density
and Young’s modulus of the material, ρe and Ee are the density
and Young’s modulus of the element, subscript e is the element
number, and p is the penalization power where p ≥ 1. This ma-
terial model leads to an isotropic material [5]. In theory Eqns.

(1) and (2) are true only if the design variables are 0.0 or 1.0. If
xe = 1.0 then the element is needed, if xe = 0.0 then the element
can be removed from the model [6].

Homogenization approach In the homogenization ap-
proach, presented by Bendsøe and Kikuchi [7], each element is
a microstructure. The design variables are the parameters of the
microstructure. In two dimensions, the microstructure consists
of millions of unit square cells oriented at an angle α. Each cell
has a rectangular hole defined by side lengths a and b. The de-
sign variables correspond to the three parameters: a, b and α.
These parameters are illustrated in Fig. 3. In this approach the
model leads to a more general orthotropic material.

Figure 3. HOMOGENIZATION APPROACH

The code, Optistruct, originally developed by Kikuchi et al.,
and now being enhanced by Altair Computing, uses the homog-
enization approach [8]. The software GENESIS, from VR&D,
uses the density approach [6].

TOPOLOGY OPTIMIZATION
The first stage in the optimum design of the interbody fusion

implant is to perform a topology optimization over the design do-
main. The idea is to obtain a first approximation of the optimum
geometry, to be tuned using shape optimization.

Optimization problem
The topology optimization problem is developed through an

elasticity analysis of the finite element model. Using linear elas-
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ticity and the principle of virtual work, we have,

FG = KGUG, (3)

where UG and FG are the global node displacement and force
vectors, KG is the global stiffness matrix. The total potential
energy is given by

V = U +Ω, (4)

where U and Ω are the internal and external potential energies
respectively [9]. The internal or strain energy for N (finite) ele-
ments is

U =
1
2

N

∑
e=1

uT
e keue, (5)

where ue is the element node displacement vector and ke is the
element stiffness matrix. Now, the total mass M is the sum of the
elemental masses ρe defined by Eqn. (1), this is

M =
N

∑
e=1

ρe. (6)

The design task is formulated as a topology optimization prob-
lem where the objective function seeks to minimize both strain
energy U and mass M defined by Eqns. (5) and (1). The opti-
mization problem can be stated as

min f =
3
∑
j=1

U (c)+M

s.t. KGUG = FG

xmin ≤ xe ≤ 1.0















, (7)

where f is the multiobjective function, xmin is the lower limit for
the design variables, and e = 1, ...,N. The subindex c = 1,2,3
represents the load case: flexion/extension, lateral bending and
compression. Normally different weight values will be imposed
on the terms of a multiobjective function. Since topology opti-
mization is meant to give an approximation of the final design,
the weight values are taken equal to one. Each term in the mul-
tiobjective function is normalized such that the initial value of
each one is equal to one. Then the initial condition corresponds
to f = 4.

Using the density approach given by Eqns. (1) and (2), the
optimization problem can be expressed in terms of the design

variables xe. In particular, the element stiffness matrix ke can be
written as,

ke = (x)p
e k0, (8)

where k0 is the original element stiffness matrix of the mate-
rial. The penalization power is typically p = 3. This approach,
used by Sigmund [10], requires a non-zero design variable to
avoid singularity conditions, typically xmin = 0.001. The soft-
ware GENESIS has implemented several different relationship
functions between design variables and material properties [6].
By default it uses Eqn. (1), but instead of Eqn. (8) it uses

ke = qk0 +(1−q)(x)p
ek0, (9)

where the penalization power is typically 2.0 ≤ p ≤ 3.0. We de-
fine the parameter q = Emin

E0
, where Emin is the minimum value

that Young’s modulus is allowed to take, where 0.0 < q ≤ 1.0,
gives a typical value of q = 10−6. There are several approaches
to solve the structural optimization problem given by Eqn. (7).
Some of the most common techniques include: Approxima-
tion concepts for structural optimization [11], Optimality Criteria
(OC) [12], Sequential Linear Programming (SLP), and Method
of Moving Asymptotes (MMA) [13]. GENESIS has incorpo-
rated approximation techniques [6].

Finite Element Model
The finite element analysis and topology optimization soft-

ware GENESIS is used to drive the topology design of the in-
terbody fusion implant. The implant will be inserted within the
annulus fibrosus of the disc after removal of the nucleus pulpo-
sus (i.e., percutaneous nuclectomy). Figure 4 provides a concep-
tual illustration of the implant within the disc in a cross-sectional
(transverse) view.

(a) (b)

Figure 4. INTERVERTEBRAL DISC (a) NORMAL (b) IMPLANTED

The design domain for topology optimization is constrained
by the geometry of the annulus fibrosus. The maximum lengths
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for the design domain define a volume of 40 mm length, 30 mm
width and 8 mm height. In this study, as Fig. 5 depicts a symmet-
ric design domain composed of 8256 eight-noded solid CHEXA
elements and 9928 grid nodes is used. The mechanical proper-
ties: Young’s modulus E0, density ρ0 and Poisson’s ratio ν, cor-
respond to that of the polymethyl methacrylate (PMMA) bone
cement.

Figure 5. DESIGN DOMAIN

The vertebral bodies above and below the implant, are con-
sidered rigid elements. The lower vertebra is modeled by fully
constraining the bottom of the design space. The upper vertebra
is modeled by one rigid element RBE2 that spans the compres-
sive half of the implant. The independent node, that controls the
motion of the rigid element, is located in the center at the top
surface of the upper vertebra. The dependent nodes are on the
upper surface of the implant. Figure 6 illustrates the shape and
the relative (rotational) motion of the rigid elements (vertebral
bodies L4-L5).

(A) (B)

Figure 6. MOTION SEGMENT (A) NATURAL POSITION (B) ROTATED

Normal load conditions for an intervertebral lumbar disc,
which are most often reported in literature, [14] [15], [16], are
400 N for the compressive load, and 7.5 Nm for the moment
loads. These moments are applied in the center of the upper
vertebra located 25 mm above the upper surface of the design
domain.

Figure 7 shows the three load conditions used for The topol-
ogy optimization: flexion/extension (Mx), lateral bending (My),
and compression (Fz). Symmetry conditions are imposed for the

Figure 7. LOAD CONDITIONS

model. The final topology of the implant must provide maximum
volume for the bone graft material to grow into the vertebral bod-
ies. Previous implant designs show that this space corresponds
to a mass fraction not higher than 50%, and usually around 35%.

Results
The topology optimization problem is solved for three load-

ing conditions: compression, flexion/extension, and lateral bend-
ing using Eqn. (7). The optimum solution is found in fifteen
iterations as shown in Fig. 8.

Figure 8. OBJECTIVE FUNCTION EVALUATION

Figure 9 shows the optimum shape for the load conditions
applied. This solution is used to obtain the final topology apply-
ing symmetry conditions.

Analysis
To illustrate the benefit of applying topology optimization

for the design of the interbody fusion implant, the results ob-
tained in this study are compared to candidate designs generated
using a trial and error approach for geometry design. A finite
element analysis of the best implant generated by trial and er-
ror is compared to the new candidate implant proposed from the
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(A) (B)

Figure 9. TOPOLOGIES (A) INITIAL (B) TUNED

topology optimization studies. The combined loading conditions
of the finite element analysis are the compressive load (400 N),
the flexion/extension moment (7.5 Nm), and the lateral bending
moment (7.5 Nm). The vertebra is modeled as a rigid element.
The lower surface of the implant is completely constrained. Ta-
ble 1 compares the values of the finite element analysis for the
optimal implant topology to that of the previous best design us-
ing relative values listed as a percentage. The analysis includes
maximum nodal displacement and maximum von Mises stress.
We observe a significant decrease (i.e., improvement) in all three
metrics of performance. The maximum von-Mises stress, nodal
strain energy and nodal displacement are significantly lower for
the optimum topology.

Table 1. TOPOLOGY OPTIMIZED IMPLANT ANALYSIS AND PER-

CENTAGE VALUES RELATIVE TO THE TRIAL AND ERROR IMPLANT

Displ [m] S Energy [Pa] vM Stress [Pa]

Compr 3.5e-6 87% 0.3e3 75% 1.84e6 92%

Flexion 20 .1e-6 44% 24.0e3 85% 11.4e6 35%

Extension 20.1e-6 79% 24.0e3 75% 11.4e6 26%

L. Bend 16.4e-6 67% 9.75e3 42% 7.2e6 73%

SHAPE OPTIMIZATION
An initial geometry of the optimum structure has been de-

fined in topology optimization. The geometric features were set
in order to obtain a model to be optimized in a more detailed
scale. Once the geometry is defined for the new implant, we can
apply the shape optimization strategy.

Optimization problem
The final design task is formulated as a shape optimization

problem where the objective function is to minimize mass M con-

strained by a maximum elemental von Mises stress σ̂,

min : M
s.t. : σ̂(c) < S f

KGUG = FG

xmin ≤ xe ≤ xmax















, (10)

where the superindex c = 1,2,3 represents the load case: flex-
ion/extension, lateral bending and compression, and S f is a fa-
tigue stress. According to data published by Lewis related to
bone cement properties [17], an amplitude of uniaxial compres-
sive load S f = 7.5 MPa, allows for a minimum of 65,970 to a
possible more than 1.5 million of stress cycles. Then this value
will be used to constrain the maximum von Mises stress in the
shape optimization problem.

To perform shape optimization, the grid perturbation ap-
proach is used in this work. The perturbation vectors are ap-
plied on the limit of specific set of nodes (i.e. domain). The
deformation of the grid in the domains, defines the final shape of
the implant. Figure 10 illustrates the domains and the perturba-
tion vectors corresponding to a quarter of the implant. Symmetry
conditions are imposed on this model.

Figure 10. DOMAINS AND PERTURBATION VECTORS

The design variables x1 and x2, correspond to the magni-
tudes of perturbation vectors. They control the thicknesses of the
implant. Appropriate domains are related with the design vari-
ables in order to maintain the geometric relations of the inner
boundary of the implant. The initial value defined for the mag-
nitude of x1 and x2 is set equal to zero. Their upper and lower
limits xmax and xmin are chosen as big as the geometry allows.

Finite Element Model
In order to determine final dimensions of the implant, a more

detailed finite model is obtained. This is new model is composed
by 6751 six-noded solid CPENTA elements and 4585 nodes.
Once again, the vertebra was modeled as a rigid element acting

6 Copyright c© 2003 by ASME



in compression. Symmetric boundary conditions are imposed to
the model. Figure 11 depicts the new layout.

Figure 11. FINITE ELEMENT MODEL

Results
The shape optimization problem is solved for the three load

conditions and the two defined design variables. The initial con-
dition of the model is infeasible since the maximum von Mises
stress σ̂ is greater than the imposed constrain S f = 7.5 MPa. Af-
ter six iterations the optimum values for the design variables are
x1 = 1.650 mm, and x2 = 1.516 mm. Figure 12 shows the objec-
tive values of the objective function and the constraint violation
along the shape optimization process.

Analysis
As a result of the shape optimization, the mass of the im-

plant increased 14% respect to the initial design (from the topol-
ogy optimization). The addition of material is to avoid the risk
of fatigue failure in the implant. The final analysis is performed
using the normal values for loading: compressive load (400 N),
flexion/extension moment (7.5 Nm), and the lateral bending mo-
ment (7.5 Nm).

The vertebra is modeled as a rigid element. The lower sur-
face of the implant is completely constrained. Figure 13 the mass
and the von Mises stress for the load conditions. We observe a
significant improvement from the first trial and error design, to
the shape optimized one.

SUMMARY AND CONCLUSIONS
A candidate geometry for an interbody fusion implant is

obtained using topology and shape optimization methods. The
topology optimization seeks to minimize strain and mass frac-
tion. This initial structure is fine tuned using a shape optimiza-
tion technique. This technique seeks to minimize mass con-
straine by a maximum von Mises stress. The implant is subject
to three different loading cases. These load cases are analyzed

Figure 12. OBJECTIVE FUNCTION AND CONSTRAINT VIOLATION

EVALUATION

Figure 13. COMPARATIVE RESULTS

along the optimization process. The implant is designed to re-
strain bone graft material while maintaining proper intervertebral
spacing during spinal fusion. In comparison to previous implant
design studies using finite element analysis, the new candidate
geometry provides better structural stability for the load condi-
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tions of compression, flexion/extension and lateral bending.
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