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Abstract

The use of Response Surface Approximation (RSA)
within an approximate optimization framework for the
design of complex systems has increased as designers are
challenged to develop better designs in reduced times.
Traditionally, statistical sampling techniques (i. e., exper-
imental design) have been used for constructing RSA’s.
These statistical sampling techniques are designed to be
space £lling, so that the response surface approxima-
tions are predictive across the range of the design sample
space. When used in sequential approximate optimiza-
tion strategies, a portion of the samples can be in the in-
feasible and/or ascent regions of the design space. These
samples can bias the resulting RSA and make it less pre-
dictive in the usable feasible region where the optimiza-
tion takes place. In the response surface based concurrent
subsace optimization approach the design sampling strat-
egy for RSA construction is optimization based. This
optimization based sampling has proved to be effective
due to the fact it samples in the linearized usable feasible
region. In the present research, an experimental design
strategy for projecting data points in the linearized us-
able feasible region is developed for constructing RSA’s.
The technique is implemented in a Sequential Approxi-
mate Optimization framework and tested in application
to two multidisciplinary design optimization (MDO) test
problems. Results show that the proposed technique pro-
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duces a more accurate RSA in the usable feasible region
as compared to using conventional statistical sampling.

Nomenclature

Projection Vector
Householder Matrix
Directional Vector
DOE Array
Matrix of Sampling Points.
Merit Function
Constraints vector
Identity Matrix
Transformation Matrix
Current Design Point
Function Gradient
Constraint Gradient
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1 Introduction.

The increased availability of high speed, lower cost
computing has powered the development of high £delity
computational models by designers in most engineering
disciplines. However the high cost of computation asso-
ciated with invoking these models prevents them from
being used in optimization, where reaching a solution
may requires hundreds or even thousands of analysis
calls. Because of this, there has been a growing interest

American Institute of Aeronautics and Astronautics



in the use of lower £delity Response Surface Approxi-
mations (RSA) as surrogate models within an optimiza-
tion framework for Multidisciplinary Design Optimiza-
tion (MDO).

The RSA strategies for optimization can be di-
vided into two broad categories. Strategies that at-
tempt to build RSA’s that span the entire design
space’:9—11,16,17,26,28,35 an strategies that sequentially
build response surface approximations within a local
trust region®—4.18,20-25,32,36-39 = oy research focuses
on the latter approach, where the notion of the usable
feasible region can be evaluated at each sequential iter-
ate using the gradient information of the objective and
constraints.

In a Sequential Approximate Optimization (SAO) al-
gorithm, at each new iteration, a RSA of the objective
function and each constraint is constructed after execut-
ing the analysis tools at each experimental design site
about the current design point. The RSA’s are used as
surrogates of the objective function and constraints. Ap-
proximate optimization subject to move limits results in
an a new design point. There are three basic features
in SAO which differentiate one algorithm from another.
First, the sampling technique used to build the RSA
around the current design point. Second, the move limit
strategy, which defnes where to sample and how far to
go in the optimization, and £nally the driving algorithm
that de£nes not only the merit function, but the overall
control of the parameters in the program. This investiga-
tion focuses on the sampling technique used to generate
the RSAs.

There exist basically two different approaches for
sampling in a SAO framework. The £rst one is a tra-
ditional statistically based sampling using Design of Ex-
periments (DOE) techniques. The objective function and
constraints are evaluated at the design points from the
experimental array. The resulting database is then used
to build a RSA. A variety of statistically based sampling
strategies such as central composite design (CCD)?3, or-
thogonal arrays (OA)®:15, D-optimality criterial® and
DACE’ are all very effective in generating response sur-
face approximations.

The other approach, is an optimization based sam-
pling, which has roots in the original Concurrent Sub-
Space Optimization (CSSO) algorithm of Sobieski 2°,
later modifed for response surface approximate opti-
mization in Renaud and Gabriel?%- 2% and refned in Wu-
jek et al.%”, and Rodriguez et al.23. Each of the subdis-
ciplines perform an optimization subject to move lim-
its. Linear approximations to the required input states
are used. The design sites visited through the subspace

2

optimizations are stored and serve as the database for the
RSA construction. The design sampling strategy is opti-
mization based and therefore the design samples tend to-
ward feasibility and descent. However, the CSSO strat-
egy is not statistical in nature and generates ribbons of
data in each subspace.

In a recent study by Rodriguez et al. 2, OA’s were in-
troduced to build RSA’s within a MDO framework. The
OA’s generate a rich sampling within the TR. Results
show that while strength 2 orthogonal arrays seem to per-
form well compared to the CSSO approach of Rodriguez
et al. 2, CSSO is still more robust in driving the opti-
mization. Strength 2 OA’s have a big advantage over tra-
ditional DOE techniques. The number of design points
for an OA with n design variables is order n®> while a
traditional DOE array as a 2 levels full factorial (FF) or
CCD are order 2". Note that the number of terms re-
quired for approximating a 2nd order polynomial RSA
is order n?.

One of the big differences between the two ap-
proaches is based on the fact, that CSSO samples mostly
in the approximate usable-feasible region; moreover, this
is not a linearized region but a curved path due to the se-
quential nature of the approach. Figure 1 shows a statis-
tical sampling array around a current design point. The
linearized usable-feasible region is bounded by the lines
orthogonal to the function and the constraint gradient.
Note that the region we are most interested in is being
sampled with only a portion of the sample points in a
traditional DOE array.

In this research a new approach for design space sam-
pling is being investigated. We propose to project experi-
mental arrays from DOE techniques such as OA’s into the
usable feasible region*° for design space sampling. The
resulting design samples will be both space-£lling and
will have properties of feasibility and descent. The £rst
part of the paper describes the methodology to create this
type of sampling. In the second part of the paper an im-
plementation of the projected sampling methodology is
incorporated in the Trust Region Augmented Lagrangian
algorithm presented by Rodriguez et al.® is tested. The
effectiveness of the resulting RSA’s are studied using two
example MDO problems.

2 Methodology

A matrix of experiments can be visualized as an hy-
percube populated by design points. Such a hypercube
can be de£ned by orthogonal vectors that form the basis
of the design space. Each of these vectors corresponds
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to a design variable. In Rodriguez et al.?* the matrix of
experiments was scaled and translated to surround the
current point with sample points bounded by the trust re-
gion as shown in Figure 1. This approach is referred to
as conventional sampling in this study. In this work we
locate the current design point in a corner of the matrix
of experiments and rotate the hypercube to point it to-
wards the usable feasible region. This section describes
the methodology developed in this research to generate
samples in the linearized usable feasible region.
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Sampling points in linearized
usable-feasible region.

Figure 1. OA sampling in a 2D design space

In a 2D design space, the linearized usable feasible
region is defned by two vectors that happen to be ei-
ther normal to the gradient of the function or to any of
the gradients of the active constraints. A defnition of
the basis can be easily formulated and we can populate
design points within the limits of the linearized usable
feasible region as is shown in Fig. 2. From this £gure
we can see that a problem may arise. The basis that de-
£nes the usable-feasible region is not orthogonal in al-
most all the cases. As a result, the array is squeezed into
a space much smaller that the original sampling region.
This problem will be revisited later when we state the
formulation for £nding the basis.

For the case of a design space in IR with n > 2, the
usable feasible region can not be de£ned by a basis of n
vectors because the linearized region is de£ned by hyper-
planes orthogonal to the function gradient or to the gra-
dients of the constraints. It is impossible to £nd a set
of vectors that will de£ne entirely the usable feasible re-
gion as in the 2D space. However we can still defne a
set of vectors that capture the majority of the linearized
usable-feasible region.
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Figure 2. Projected OA sampling in a 2D design space

For mulations

The problem is to £nd a set of unit vectors a; that
satisfy two conditions. The £rst one is that they can be
used to defne a space primarily in the usable feasible
region. The second condition is that the vectors must be
as close as orthogonal as possible. The £rst condition
relates to the main idea of this research, the latter to the
desire to avoid squeezing the array, creating a sampling
array in a slender region.

For the following formulations, we assume the stan-
dard form of a non-linear constrained optimization prob-
lem with inequality constraints of the form g > 0. Equal-
ity constraints do not enter in any formulation but can be
present in the problems.

2.1 Formulation |
A simple formulation for £nding the basis is:

minwrtaa O 1)
st. a'a; <a Lj=1.ni#j (2
alaj>-a  i,j=Llni#j] @)

a'0f <0 i=1.n (4)

a'0g; >0 i=1l.nj=1m (5

ala =1 i=1..n (6)

This formulation provides a set of normal vectors
which are strictly in the linearized usable-feasible region.
At the same time the minimization pushes the vectors to
be as close to orthogonal as possible.
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2.2 Formulation Il

In a variation of the £rst formulation we force the
vectors to be orthogonal, but some of them might be out
of the linearized usable-feasible region:

MiNyrtag O (7)
st. alaj=0 i, j=1.ni#]j (8)
allf <a i=1.n 9)

—al0g; < a i=1.n,j=1.m (10)

a'la =1 i=1..n (12)

Both Formulation I and Il introduce a minimization
subproblem required within each iteration of the SAO al-
gorithm. Moreover, the dimension of the subproblems is
n? + 1 and there is no unique solution. This subproblem
might become expensive and it has to be repeated at each
iteration. Therefore there is a need for a simpler formu-
lation that avoids such complex minimization problems.

2.3 Formulation |11

The third formulation differs from the previous two
in that there is no need for a minimization subprob-
lem. Assume we can £nd a vector d which points to
the usable-feasible region. We can generate an orthog-
onal basis g around the vector d that projects toward
the linearized usable-feasible region. Note that the vec-
tors that form the basis might point to the infeasible re-
gion, however most of the space bounded by such vectors
will be located in the feasible region. Each of the in-
feasible vectors can be projected onto the most violated
constraint hyper-plane, generating a strictly feasible non-
orthogonal basis. In the following paragraphs we discuss
in detail each of the steps required in such projection.

2.3.1 Sampling direction. Many of the methods
of optimization for NLP use the concept of a search di-
rection and a line search to reduce the value of the merit
function. Depending of the algorithm used to drive the
optimization, one can choose between constrained and
unconstrained line search directions. If the merit func-
tion is a penalty function or an Augmented Lagrangian,
one can use an unconstrained search direction (steepest
descent, conjugate gradient, quasi-Newton), however if
we are interested in a strict descent feasible direction, we
can use Zoutendijk’s usable-feasible direction’® or the
direction obtained solving the quadratic subproblem in
the SQP approach. In this research one makes use of
conventional search directions as a basis for de£ning a
sampling direction.

In Rodriguez et al.?* and in this research the Aug-
mented Lagrangian is used as the merit function. There-
fore the natural sampling direction to be used is the de-
scent direction, however because the variable bounds
are not included when constructing the Augmented La-
grangian, the concept of projected gradient will be
used??,

232 Consruction of the orthogonal basis.
Once the sampling (i. e. search) direction has been
found, the next step is to construct an orthogonal basis
around this search direction. This is done in a very eff-
cient manner with the help of the Householder transfor-
mation 12,

Let’s defne a unit vector swith components s; = %
where n is the number of design variables. This unit vec-
tor is surrounded by n unit vectors g that form an or-
thogonal basis that correspond to each of the axis of the
design space. The angle between S and each € is given
by cos8 =s'g = % Assuming that our search direc-
tion d is a unit vector. There exists an orthonormal linear
transformation A = AT formed by unit vectors a; such
that A s= d and the unit vectors g form the orthogonal
basis around d that we are looking for, as Ag = a and
ald= .

The orthonormal matrix A can be generated by use of
the Householder transformation.12

A Householder transformation matrix A is deEned by
a vector u as:

1
A:I—EuuT, (12)

where u is the vector that joins d and s scaled by a mag-
nitude £. To simplify we make r = d —sand so

r
== 13
U=z (13)
substituting (13) into (12) we obtain:
1rrT
A=1-— 2 CZ (14)
where C has to be chosen such that:
As=d. (15)
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Substituting (14) into (15) we obtain:

1 7
—ﬁrr s=d-s. (16)

Note that r Tsis a scalar and d — s=r. Therefore:

1 7

—ﬁr S= 1, (17)

so we can £nd C as:
c? = —%rTs, (18)
C? = %(des). (19)

Finally substituting (19) into (14) gives:

re’

A=———.
1-dTs

(20)

Note that the unit vectors a could lay on the infeasible
region, but most of the sampling would be oriented to-
wards the usable-feasible region.

2.3.3 Projection of the basis to the feasible re-
gion. Once the orthogonal basis is computed, we can
check for feasibility of each of the unit vectors. Given the
gradients of the active constraints at the current design
point [Jg; we look for pairs {i, j} such that ngTa <0.
A new feasible unit vector & = ag + p0g; can be com-
puted such that [Ig; & = 0 and ||& [|2 = 1, which replaces
those vectors g; that point to the infeasible region. These
approach is referred as the projected non-orthogonal ar-
ray in this research.

There are two basic disadvantages of building a set of
non-orthogonal projection vectors. The £rst one is that it
might generate a very slender polytope loosing the rich-
ness of the £1ling sought with OA. The second one relates
to the fact that the linearized usable feasible region might
not coincide with the actual non-linear usable feasible re-
gion.

2.3.4 Scalingof thebasis. Once the basis is set, it
has to be scaled to meet the current trust region. For this
process it is important that all the design variables have
proper scaling. The search direction vector d is extended

until it reaches the TR bound. Then it is projected onto
the basis. Each of the projected components form the
transformation matrixT. The new transformation matrix
T is formed by a set of non unit vectors that defne a
polytope pointing toward the descent direction which are
scaled to the size of the TR.

2.35 Computation of design points. Finally to
defne the array of design points E to be sampled by the
algorithm, we £rst, project the matrix of experiments D
onto the basis T, and second, translate it to the current
design point.

These two operations can be done as follows:

1
E= HT.DT+x0 (21)

3 Test Problems

To test the new method, two MDO problems tested
in the Rodriguez et al.?* study of OA’s are used. The
driving algorithm for the optimization is the Trust Re-
gion Augmented Lagrangian introduced by Rodriguez et
al.?2:24 The algorithm is based in an Augmented La-
grangian merit function. The sampling direction d is
defned as the negative of the projected gradient of the
Augmented Lagrangian.

3.1 TheControl-Augmented Structure

The structures-controls design problem shown in Fig-
ure 3 was introduced by Sobieski et al.3!. The problem
includes a total of 11 design variables and 43 states. The
physical problem consists of a cantilever beam subjected
to static loads along the beam and to a dynamic excita-
tion force applied at the free end. Two sets of actuators
are placed at the free end of the beam to control both the
lateral and rotational displacement.

% fffffff e

Figure 3. Control-Augmented Structure.
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The system analysis is comprised of two coupled
contributing analysis as shown in Figure 4. The struc-
tures subsystem, CAs consists of a £nite element model
of the beam where the natural frequencies and modes of
the cantilever beam are computed. CAs requires, in addi-
tion to the characteristics of the beam, the weight of the
control system as input. The weight of the control sys-
tem is calculated at the controls CA, CA¢. The weight of
the control system is a function of the dynamic displace-
ments and rotations of the free end of the beam. These
dynamic displacements and rotations are functions of the
natural frequencies and modes obtained in the structures
CA, thus subjecting these CAs to coupling.

CAq %

Structures

CA

Ye Controls

Figure 4. Dependency diagram of the CAS design problem.

The objective of the optimization is to minimize the
total weight of the system W, composed of the weight
of the beam Ws plus the weight of the control system
W.. The minimization is subjected to seven constraints
on the static stresses (o), static lateral and rotational dis-
placements (dl and dr), the £rst two natural frequencies
(o and wy) and dynamic lateral and rotational displace-
ments at the free end of the beam (ddl and ddr). The
problem is posed as:

min W == W5+WC

subject to

=1——>
o1 dla_o’
dr
=1-—2>0
02 dr, =
w
=1 _1>0,
O3 WL, >
0V}
=2 _1>0,
04 . >
G=1-—2>0,
a
ddl
=1— >
% =1~ Gar, =°
ddr
=1——>
gr dar, =2

3.2 Autonomous Hovercraft

The design of an autonomous hovercraft (AHC),
shown in Figure 5, was £rst presented in Sellar et al.?’.
This problem involves 11 design variables and the cal-
culation of 50 states. The physical system consists of an
engine, rotor, and payload. The rotor is comprised of two
rectangular lifting surfaces located on opposite ends of a
hollow, circular shaft. The system is to operate such that
the motor speed (RPM) provides a thrust-to-weight ratio
of one, imposing a hover condition.

Figure 5.  Autonomous hovercraft system.

The system analysis is comprised of four contribut-
ing analysis, three of which interact in a complex cou-
pled fashion as illustrated in the dependency diagram of
Figure 6. The aerodynamics CA (CA,) calculates the
aerodynamic loads on the lifting surfaces and approxi-
mates the distributed drag force along the rod while es-
timating the induced velocity at the lifting surfaces as a
function of the thrust. CA; requires the torsional defor-
mation of the shaft (84), the motor RPM and thrust as
inputs. The shaft deformation is supplied by the struc-
tures CA (CAgs). All the quantities calculated by this CA,
which also include the axial and shear stresses at the hub
and the denection of the lifting surfaces, are a function
of the aerodynamic loads, thus subjecting these CA’s to
static aeroelastic coupling. The propulsion/performance
CA (CA) calculates the thrust and torque necessary to
spin the motor based on the loads supplied by CA;. RPM
is calculated by explicitly imposing that the total weight
equals the thrust, determining the weight of the motor to
achieve this total weight, and calculating the power and
resulting RPM available from that size motor. The fourth
CA, structural dynamics (CAy), calculates the £rst natu-
ral frequencies of the rotor in bending and torsion. This
CA is completely uncoupled from the other CA’s as it
requires no states as inputs.
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Aerodynamics *
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Propulsion/
Thrust Performance \
CA4
Dynamics

Figure 6. AHS dependency diagram.

The goal of the optimization of this system is to min-
imize the empty weight of the hovercraft subject to con-
straints on the Von Misses stress due to in-plane (o)
and normal forces (ot) in the rod, the £rst natural fre-
quencies of the rod (wy and ), the Mach number at the
tip (Myip,, ), and the hovercraft range (E). The global op-
timum for this problem was £rst reported in Sellar.”. The
optimization problem is posed as:

min Wempty = V\‘/\/ing +Wod +Wruel +Wnotor

subject to

G=10-N>g9

Gall
@=10-2T>00,
Call
o)
= ~1.0>0.
%= rem 0200
IR
= ~1.0>0.
%=1 rem 10200
M.
gSZMZOOa
tip
E
= _— -1.0>0.0.
Js Ereg 2

4 Testing M ethodology

To test the projected sampling methodology devel-
oped in this paper, we use the trust region managed aug-
mented Lagrangian algorithm introduced by Rodriguez
et al.?? The variable £delity analysis approach imple-
mented in Rodriguez et al.?* is used for analysis at the
projected sampling sites. One of the advantages of the
Rodriguez algorithm is that the trust region manage-
ment strategy insures convergence through proper man-
agement of the move limits in the sequential minimiza-
tion. The augmented Lagrangian approach translates the

nonlinear constrained minimization problem into an un-
constrained minimization problem with variable bounds.
In this case, the sampling direction d is de£ne as the de-
scent direction of the augmented Lagrangian, taking into
account the variable bounds by means of the projected
gradient. The projected gradient is computed within the
algorithm for the convergence check and therefore their
is no additional cost imposed when using the new pro-
jected sampling strategy.

The sampling strategy is similar to that used in
Rodriguez et al. 2* The experimental array is a strength 2
OA with 8 levels for 11 design variables. The OA is ran-
domized after each iteration with respect to the 11 design
variables. Using the projected methodology developed in
this research, at each iteration the basis is computed and
the OA projected into it. The design points generated
by the projected array are sampled in each of the decou-
pled contributing analysis. This strategy was reported as
the most successful one among a suite of strategies com-
pared in Rodriguez et al. 2* A second order RSA of the
objective and each constraint are built using the queried
data.

A comparison between the projected array proposed
in this paper and the conventional statistical sampling
used in Rodriguez et al..?* is performed for both test
problems. The third technique compared is the projected
non orthogonal sampling, i. e. with the basis strictly fea-
sible as described in subsection 2.3.3.

5 Resaults

5.1 Control Augmented Structure

5.1.1 Computational cost. In the following table
we compare the cost as the total number of approxi-
mate minimizations. The optimization was performed
ten times for each case. The same initial design point
was used for the ten repetitions, however a different ini-
tialization for the random generator was required at each
run. The results represent the mean and standard devia-
tion of the number of iterations..

Conventional | Projected | Projected n/o
Mean 40 37 67
Variance 11 11 16

Table 1. Mean value of the total number of approximate mini-

mizations for the CAS problem

7
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Introduction of the projected sampling strategy does
not signif£cantly improve the mean while the variance
remains without change. The projected non orthogonal
sampling requires an increased number of approximate
minimizations with a larger standard deviation. One
possible explanation why the projected sampling strat-
egy does not perform signifcantly better than the con-
ventional centered orthogonal array might be related to
the nature of the sampling direction as we approach the
optimum. In the trust region managed augmented La-
grangian approach, a successive minimization of the aug-
mented Lagrangian is performed as part of an inner loop
with a £xed set of multipliers. Once convergence in the
inner loop is reached, the multipliers are updated and an-
other sequence of minimizations is performed. The pro-
jected gradient of the augmented Lagrangian becomes
very small as the algorithm approaches convergence. As
the projected gradient approaches zero, the sampling di-
rection becomes difEcult to compute accurately due to
round off errors in the analysis tools. The sampling
methodology proposed is based on the use of the pro-
jected gradient as the sampling direction. If the projected
gradient is inaccurate, the sampling direction is inaccu-
rate too, and the sampling is performed in a direction dif-
ferent than the desired one. A second explanation might
be that the traditional centered OA sampling produces
RSA’s that approximate the augmented Lagrangian accu-
rately and therefore the projected sampling strategy does
not perform better.

The projected non-orthogonal sampling has a very
poor performance. The augmented Lagrangian algo-
rithm used for minimization is basically an external point
method. One or several constraints are violated through-
out the optimization. If several constraints are violated
or active at a given point the linearized feasible region
might be too narrow. The projected non-orthogonal ar-
ray of experiments is squeezed into that region and a very
poor experimental design is obtained.

512 TR/SRratioy. Another way to visualize if
the projected array provides a better approximation to the
function is through the use of the trust region test.2:3:38.39

The trust region approach is based on the use of a
trust region ratio p to monitor how well the current ap-
proximation is found to represent the actual design space.
Considering an unconstrained problem with an objective
function ® which is approximated by a function ®, the
trust region ratio is defned as

(22)

8

This is simply the ratio of the actual change in the func-
tion to the change predicted by the approximation. The
closer the value of p to one, the better the approximation
® mimics the behavior in the descent direction of ®. Af-
ter each optimization iteration (t), the trust region radius
is updated according to the following principles:

1. If the ratio is negative or small, the iteration is con-
sidered unsuccessful since either the actual objective
increased (it is known that ® will not increase) or it
did decrease, but not nearly as much as predicted by
the approximation. In either case, the approxima-
tion is certainly poor and the trust region must be
reduced.

2. Conversely, if the ratio is close to one, a reasonable
decrease in the objective function has been observed
relative to the approximate decrease, and the itera-
tion is considered successful. It should be noted that
if the ratio is signi£cantly larger than one, the objec-
tive function actually decreased more than had been
predicted, and the approximation is actually a poor
representation of the design space. However, since
this scenario is actually favorable as more reduction
is gained than expected, it is considered as a suc-
cessful iteration.

3. Finally, if the ratio is an intermediate value, the wis-
est choice of action may be to leave the size of the
trust region as it is.

Mathematically, the above rules for updating the trust
region radius may be described by choosing constants
to deEne the ranges of the ratio value for which reduc-
tion or enlargement are necessary. The positive constants
R <Ry <landc; <1,c, > 1 are chosen so that the
trust region radius A (% change allowed for each design
variable) is updated as

ciAY if pO < Ry
AV if pt) > R,
AY  otherwise

A(t+1) _ (23)

Typical values for the limiting range values are Ry =
.25 and R, = .75. The trust region multiplication factors
¢1 and c; have been chosen in to be .25 and 2 respec-
tively.

In this research, we de£ne a new term referred to as
the Sampling Region (SR). In the current implementation
the sampling region is the same as the trust region for the
current iterate. The projected OA used in this research is
therefore bound by the current trust region. Testing in-
dicates that the RSA’s developed using the projected OA
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sampling are predictive beyond the trust region bounds.
Therefore in future studies we plan to independently as-
sign the trust region and sampling region.

To illustrate the more predictive RSA’s generated us-
ing the projected OA sampling, we can change the size of
the TR used for optimization, and perform a trust region
test to see how predictive the approximation is beyond
the sample region. We control how far beyond the cur-
rent SR we extend the TR by the introduction of a TR/SR
ratio y. For each value of ywe perform a minimization of
the RSA. A trust region test is performed and the value
of the trust region ratio p is queried. Figures 7, 8 and
9 show the results for three different points in the opti-
mization. The £gures show results for the projected, the
projected non-orthogonal and the conventional cases.

0.8r
a 0.6
2
[ \
x Projected
=04}t Projected n/o \
— - Conventional \
\
0.2} !
\
\
O 1 1 1 A‘ 1 1
0.5 0.75 1 1.25 15 1.75 2

TR/SR ratio y

Figure 7. Trust Region ratio P vs. TR/SR ratio Y for the CAS
problem

Figure 7 corresponds to an initial feasible point.
When the ratio y approaches zero, the TR ratio goes to
one because the RSA is a second order Taylor series ex-
pansion. When y= 1 the values of the TR ratios differ but
not enough to alter the control of the TR (see Equation
23 in the augmented Lagrangian process. However as
the TR/SR y increases, the RSA from the projected sam-
pling provides a much better approximation. Aty=1.5
the TR ratio for the projected sampling is still very good
p = 0.8 whereas the conventional OA leads to p =0.0 .
Eventually both curves end up having negative values but
we could make more progress in the optimization using
the projected sampling strategy. Because no constraint is
violated, the curve for the projected and projected non-
orthogonal cases are the same.

Figure 8 shows a different design point. We clearly
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see that the projected and the projected non-orthogonal
samplings generate a very good RSA as the value of the
TR ratio is nearly 1 even for big values of the y ratio.
For the given SR, the RSA predicts the behavior of the
function very well, at least in the descent direction. The
conventional sampling also does a good job for moder-
ate values of y, however at large values of the ratio, p
is very unstable in its response, although p maintains a
value above 0.5. For this design point, the RSA for the
projected non-orthogonal sampling exhibits slightly bet-
ter performance than the orthogonal projection.
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Figure 9. Trust Region ratio P vs. TR/SR ratio Ya

When several constraints are active or violated and
tend to oppose each other with respect to feasibility,
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an interesting effect is noticed as shown in Figure 9.
The projected sampling generates a good approximation,
however the projected non-orthogonal results in a very
unstable approximation that switches between positive
and negative values in a sudden manner. The response
for the conventional sampling is good, except for a small
interval where it deteriorates.

5.2 Autonomous Hover cr aft

5.2.1 Computational cost. For the AHS prob-
lem, the results are very interesting. In all three cases,
the mean value of the number of approximate minimiza-
tions remains the same while the value of the standard
deviation increases for the case of the projected sampling
and for the projected non-orthogonal sampling. Table 2
summarizes the results.

Conventional | Projected | Projected n/o
Mean 15 15 15
Variance 3 7 4
Table 2. Mean value of the total number of approximate mini-

mizations for the AHS problem.

522 TR/SRratio Three different design points
were evaluated. Their corresponding behaviors are
shown in Figures 10-12 for the the AHS. The projected,
projected non-orthogonal and conventional samplings
are displayed. In Figure 10 the projected sampling ex-
hibits better performance in the approximation of the
function. Close to y =1 the value of the TR ratio is
very similar for the three approaches, however the dif-
ference between projected and conventional increases as
y is increased. The projected non-orthogonal approach
has a response that oscillates between the projected and
the conventional approach. Note that the rate of decrease
in the TR ratio p reduces as y is increased.

In Figure 11 the three approaches exhibit similar be-
havior. There is no noticeable difference for the range of
y explored. It might be that the function is very close to
a quadratic about the current design point and no matter
how the sampling is performed, a good approximation is
obtained. With y > 2 the curve becomes zat. When y is
small, the result of the minimization over the RSA lays
on the bounds of the TR. As y is increased the minimum
(both of the true function and of the RSA) keeps moving
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with the bounds until it is within the bounds. After that
even if the bounds are enlarged, the value of the mini-
mum won’t change. Another reason for the curve to zat-
ten out is when the bounds of the TR reach the variable
bounds of the problem in the direction of the minimiza-
tion.
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Figure 11. Trust Region ratio P vs. TR/SR ratio Y

Finally in Figure 12 the projected and projected
non-orthogonal samplings have almost the same perfor-
mance, with a slight advantage observed for the latter.
The response for the conventional sampling is just below
them, with a bigger difference for small values of y. As
in Figure 10 the slope decreases as y is increased.
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6 Discussion

The projected sampling described in this paper is
capable of providing a RSA suitable for optimization.
The projected sampling queries more points in the de-
scent feasible direction, generating a richer database for
construction of the RSA. The improvement in RSA per-
formance when using projected sampling, does not af-
fect directly the overall performance of the optimization,
measured by the total number of approximate minimiza-
tions. This can be explained with the help of Figures 7,
9 and 10. Note that when y = 1 the value of the TR ratio
for both the projected and the conventional sampling are
similar in value. Because of this the trust region used in
the next iteration will be the same for both methods (see
Equation 23). Therefore even though the projected OA
generates an improved RSA, no appreciable difference is
observed in optimization convergence rate. In future re-
search, the development of a dynamic control strategy for
setting the TR independently from the SR will be inves-
tigated. We hope to exploit the improved RSA to speed
convergence.

When we force the projection to be strictly in
the approximate feasible region (i. e. projected non-
orthogonal), we obtain non-desirable effects. The hy-
percube defned by the orthogonal basis is squeezed into
a slender polytope. The sampling volume is reduced,
while the corner completely opposite to the current de-
sign point is pushed away. As a result the sampling is rel-
atively rich along the line between those two points, but
poor around the polytope. More importantly, the sam-
pling may not capture the behavior of the constraints in
the infeasible region, when they are active, which is the
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case at the constrained optimum. This phenomena is ob-
served in Table 1 where both the number of approximate
minimizations and the standard deviation are increased
with the use of the non-orthogonal projection. On the
other hand this effect is not noticeable for the AHS as
shown in Table 2. The difference in behavior between
the two problems rezects the instability of the projected
non-orthogonal sampling, when several constraints are
active or violated. Figures 8 and 9 show this negative
effect.

7 Conclusions

A technique to project an orthogonal array into the
linearized usable-feasible region to construct response
surface approximations (RSA) for sequential approxi-
mate optimization is presented. The technique has been
implemented successfully within a trust region managed
augmented Lagrangian approach. Two multidisciplinary
design optimization (MDO) test problems are used to
evaluate the utility of the projected array for RSA con-
struction. Results show that the RSA’s obtained using
the projected sampling strategy are more predictive in
the usable feasible region when approximating the re-
sponse of the augmented Lagrangian function. Although
the new RSA’s are more predictive, no appreciable dif-
ference in the number of approximate minimizations re-
quired to converge the optimization was observed. The
current trust region model management strategy does not
exploit the improved RSA. A new framework to dynam-
ically adjust the trust region (TR) with respect to the
sampling region (SR) is being investigated to exploit the
more predictive RSA’s.
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