
February 27, 2003 18:59

AIAA-2001-1620

DEVELOPMENT AND VERIFICATION OF A MATLAB DRIVER FOR THE
SNOPT OPTIMIZATION SOFTWARE

Shawn E. Gano ∗ Victor M. Pérez † John E. Renaud ‡

Department of Aerospace and Mechanical Engineering
University of Notre Dame

Notre Dame, Indiana
Email: John.E.Renaud.2@nd.edu

Abstract

The MATLAB program and computing language has
seen increased usage both in industry and academia in
recent years. This is due to the ease in which it handles
matrices and numerical computations. This computing
environment also has an array of toolboxes for different
mathematical and engineering tasks (e.g., controls,
optimization). These toolboxes provide a general suite
of numerical tools within a specific discipline for the
user. The toolbox codes are general tools and are
not typically as robust or as efficient as state of the
art numerical codes develop by advanced users in a
given discipline. In this research a MATLAB driver
which links an existing robust and efficient optimization
program SNOPT is developed and tested. The resulting
program and driver have proved to be more efficient than
the existing MATLAB toolbox codes for optimization.

1 Introduction

SNOPT is a state of the art sparse nonlinear program-
ming tool for optimizing problems consisting of large
numbers of variables and constraints. It was developed
by Stanford Business Software Inc., the developer of

∗Undergraduate Research Assistant, Student Member AIAA
†Graduate Research Assistant, Student Member AIAA
‡Associate Professor, Associate Fellow AIAA.

Copyright 2001 by John E. Renaud. Published by the American In-
stitute of Aeronautics and Astronautics, Inc. with permission.

several other optimization programs such as MINOS and
NPSOL. Written in FORTRAN 77, SNOPT employs
a sparse SQP algorithm with limited-memory quasi-
Newton approximations to the Hessian of Lagrangian. In
this research a MATLAB driver for the SNOPT software
is developed and tested.

In today’s academic environment FORTRAN is
less commonly used as an engineering programming
language, and therefore SNOPT’s problem solving
capabilities are artificially restricted to FORTRAN
users. The programming tool/language MATLAB has
become a powerful and widely used tool in academic
research. Researchers take advantage of MATLAB’s
powerful features and flexibility to write a wide variety
of computational tools. MATLAB includes a range of
specialty toolboxes for applications ranging from control
systems, artificial neural networks and optimization.
While the toolboxes provide a variety of capabilities,
they are by no means state of the art in capability. In
practice, researchers might prefer the efficient SNOPT
algorithms over MATLAB’s own optimization packages.

In a recent investigation by Gu, et al.4 a decision
based collaborative optimization framework was im-
plemented exclusively in MATLAB’s programming
environment. In that investigation the use of MAT-
LAB’s SQP algorithm for optimization was observed
to be unstable and performed poorly in managing
the decision based collaborative optimization pro-
cess. The SNOPT-MATLAB driver being developed
in this research will facilitate the use of SNOPT
as a best inclass SQP algorithm for driving decision

1
American Institute of Aeronautics and Astronautics

MATLAB

Run time engine

funcon.m funobj.m problem.m

SNOPT.c

 Driver

funcon.f funobj.f

 SNOPT

Optimizer

M
E
X

C

F
O
R
T
R
A
N

7
7

1

2

3

4
5

6
7

8

9
10

11
12

13
14

15

16

17

18User Defined

Figure 1. SNOPT-MATLAB Driver Flow Chart

based collaborative optimization algorithm of Gu, et al.4.

The MATLAB driver for SNOPT is available to
users via the Internet at the Design Automation Lab.
webpage: http://www.nd.edu/ nddal/index.htm

2 Program Hierarchy

To run a problem in the stand-alone version of
SNOPT, two subroutines and one general program
have to be written in FORTRAN. The general program
would define the problem and call the SNOPT routines.
SNOPT would call the other two subroutines for the
objective function, constraints, and their respective
gradients (if known). This process is mimicked in the
driver. The user creates a script (*.m) file in MATLAB
that sets up the problem and calls the SNOPT driver.
Also the user creates two MATLAB file functions
that compute the objective function, constraints and
respective gradients. The flow of the program is depicted
in Figure 1.

Every problem run using the driver goes through
18 basic steps. These steps are numbered in Figure 1
and are described by: (1) The problem .m script file
is invoked in the MATLAB runtime engine. (2) After
computing or assigning all needed parameters the prob-
lem file calls the SNOPT driver. (3) The SNOPT driver,
written in MEX C∗, imports the MATLAB variables,
allocates the workspace memory, and makes a call to

∗Mex C: compiled C code for MATLAB

SNINIT which is the initial call to the SNOPT program.
(4) SNOPT returns to the driver after it has initialized
the optimization program. (5) The driver calls SNSPEC
which tells SNOPT where to find the options file (if it
exists). (6) SNOPT returns to the driver after it has read
the options file (if possible). (7) The driver makes the
final call to SNOPT for optimization of the problem. (8)
SNOPT calls funcon.f for the constraints and possibly
their gradients. (A call to funobj.f may occur first
depending on initial variable conditions). (9) funcon.f
calls the user defined MATLAB code for the constraints
and gradients. (10) funcon.m (MATLAB) returns the
constraints and the gradients. (11) funcon.f converts
the MATLAB variables to FORTRAN and then returns
to SNOPT. (12) SNOPT calls funobj.f for the objective
function and its gradient. (A call to funcon.f may
occur second depending on initial variable conditions).
(13) funobj.f calls the user defined MATLAB code for
the objective function and its gradient. (14) funobj.m
(MATLAB) returns the objective function and possibly
the gradient. (15) funobj.f converts the MATLAB
variables to FORTRAN and then returns to SNOPT.
(16) After repeating steps 8 through 12 as many times
as needed to find the optimum solution SNOPT finishes
and returns the final values to the driver. (17) The MEX
C driver converts the return variables to MATLAB and
exits. (18) The problem .m script finishes and returns to
the MATLAB engine.

3 Problem Setup

Setting up a problem for running in MATLAB is
identical to the procedure used in setting up the prob-
lem in FORTRAN, and is described in more detail in the
SNOPT User’s Guide3.

3.1 Problem Definition
SNOPT solves problems which are assumed to be

stated in the form

minimize f (x)
x

subject to l ≤





x
F(x)
Gx



≤ u

where f is a smooth scalar objective function, x
are design variables, l is a constant lower bound, u is
a constant upper bound, F(x) is a vector of smooth

2
American Institute of Aeronautics and Astronautics

nonlinear constraint functions, and Gx is the vector of
linear constraints.

Note that all variables and constraints have their own
unique upper and lower bounds. Free variables and free
constraints are ones that have infinite bounds.

SNOPT converts the inequality constraints to equal-
ity constraints by means of slack variables such that the
slack variables have the same lower and upper bounds as
the constraints.

3.2 Jacobian and Sparcity Syntax
The full Jacobian matrix is defined as

A =

(

∂F(x)i
∂x j

Gxi

)

The sparcity pattern of A is input column-wise via the
array parameters a, ha, ka. While zero entries do not need
to be included. For a more complete definition of the
Jacobian matrix, refer to the User’s Guide for SNOPT3.

4 The program.m File

4.1 The SNOPT Call and Variable Definitions
The program .m file is a MATLAB script in which all

of the problem variables are set and the SNOPT Driver
is called. A few of the required parameters for running
the FORTRAN optimizer have been hard coded into the
driver minimizing the amount of parameters passed to
the driver from MATLAB. The call to the driver should
be in the form

[hs, xs, pi, rc, inform, mincw, miniw, minrw,
ns, ninf, sinf, obj] =snopt(m, n, ne, nncon,
nnobj, nnjac, iobj, objadd, prob, a, ha, ka,
bl, bu, xs, ru, op1, op2, op3, op4);

Note: this should all be on one line

The input variables are: (m) Number of general
constraints (m > 0). (n) Number of variables, excluding
slacks (n > 0). (ne) Number of nonzero entries in A.
(nncon) Number of nonlinear constraints (nncon ≥ 0).
(nnobj) Number of nonlinear objective variables
(nnob j ≥ 0). (nnjac) Number of nonlinear Jacobian
variables. (iobj) Defines which row of A is a free row
containing a linear objective vector c. (objadd) A

constant added to the objective for purposes of printing.
(prob) An eight character name for the problem. (a(ne))
The list of nonzero entries in the full Jacobian. (ha(ne))
The corresponding row number for each value of a.
(ka(n+1)) Defines the beginning of each new column
of the full Jacobian. (bl(n+m)) Contains the lower
bounds of the variables and constraints (slacks) (x,s).
(bu(n+m)) Contains the upper bounds of the variables
and slacks (x,s). (xs(n+m)) Initial values for the
variables and slacks. (ru()) Array of user workspace.
Can pass any set of numbers to the function routines.
(op1) Additional memory option for the character
workspace. (op2) Additional memory option for the
integer workspace. (op3) Additional memory option for
the double (real) workspace. (op4) When op4 = 1 the
variables passed from MATLAB to the driver are printed
to the screen (useful in debugging).

The output variables are: (hs(n+m)) The final state
vector. (xs(n+m)) Final variables and slacks (x,s).
(pi(m)) The vector of dual variables π (a set of Lagrange
multipliers for the general constraints). (rc) Vector of
reduced costs. (inform) Reports the result of the SNOPT
call. (mincw) Reports how much character storage is
needed to solve the problem. (miniw) Reports how
much integer storage is needed to solve the problem.
(minrw) Reports how much double (real) storage is
needed to solve the problem. (ns) The final number of
superbasic variables. (ninf) The number of constraints
that lie outside their bounds by more than the feasibility
tolerance (violated constraints). (sinf) The sum of vio-
lated constraints. (obj) Value of the objective function,
including the constant objadd.

4.2 Building Variables a(ne), ha(ne), and ka(n+1)

The sparcity of the full Jacobian matrix A is repre-
sented in the 3 arrays a(ne), ha(ne), and ka(n+1). Only
the nonzero terms of the matrix are defined.

The variable a(ne) contains a list of all the nonzero
entries. These entries are just given by their constant
gradient values if linear, or a dummy value, like 0, if they
are not linear. Entries are typed column wise starting in
the upper left hand corner and working down and to the
right. Figure 2 shows how the a(ne) array is constructed.
If the ith entry is a constant then a(i) is that constant
otherwise a(i) = 0 (or any other dummy value).

The vector ha(ne) contains the row number for

3
American Institute of Aeronautics and Astronautics

a

*

*
**

1

2

3

4

0

0

0 0

0

1 2 3

1

2

3

*1

*2

*3

*4

Figure 2. Variable a(ne) Structure

ha

1

3

2

3

*

*
**

1

2

3

4

0

0

0 0

0

1 2 3

1

2

3

Figure 3. Variable ha(ne) Structure

each nonzero entry. Such that ha(i) = row a(i) where
i = 1 . . .ne. This process is depicted in Figure 3.

Finally, ka(n + 1) contains the index number for the
first nonzero entry in each column and the last number
of the vector must be ne + 1. This results in ka(1) = 1
and ka(n + 1) = ne + 1 always. See Figure 4 for a
visualization of this process.

For a more concise definitions of a(ne), ha(ne), and
ka(n+1) refer to the User’s Guide for SNOPT3.

5 The funobj.m File

The funobj.m is a MATLAB function file. It com-
putes the objective function and possibly it’s gradients.
The first line of the file must have the form

function [fobj,gobj,mode,grad] =
funobj(x,mode,nstate,ru)

ka

1

3

4

5

*

*
**

1

2

3

4

0

0

0 0

0

1 2 3

1

2

3

+ 1

Figure 4. Variable ka(n+1) Structure

The input variables are: (x(nnobj)) Contains the
nonlinear objective variables x. (mode) Indicates
whether f ob j or gob j or both need to be assigned during
the present call. (nstate) Indicates the first and last calls
to the function. (ru()) The workspace array of user
defined values.

The output variables are: (obj) Returns the computed
value of f (x). (gobj(nnobj)) Returns the gradient vector
g(x). (mode) May be used to indicate that you are
unwilling to evaluate the objective function at the
current x. (grad) Specifies whether or not the user is
supplying the gradients (gobj).

6 The funcon.m File

The funcon.m file is a MATLAB function file. It
computes the nonlinear constraints and possibly their
gradients. The Gradients are stored column wise in
the array gcon. gcon is a one dimensional array and
must store the Jacobian values in the same order as the
corresponding parts of a, ha, and ka. The file’s first line
must have the form

function [fcon, gcon, mode, grad] =
funcon(x,mode,nstate,ru)

Where the input variables are: (x(nnjac)) Contains
the nonlinear Jacobian variables x. (mode) Indicates
whether f con or gcon or both need to be assigned during
the present call. (nstate) Indicates the first and last calls
to the function. (ru()) The workspace array of user

4
American Institute of Aeronautics and Astronautics

defined values.

Where the output variables are: (fcon(nncon))
Vector containing the values of the nonlinear constraints.
(gcon(nejac)) Where ne jac = nncon ∗ nn jac. Returns
the computed Jacobian of the nonlinear constraints.
(mode) May be used to indicate that you are unwilling
to evaluate the objective function at the current x.
(grad) Specifies whether or not the user is supplying the
gradients (gcon).

7 Test Problems

To test the SNOPT-MATLAB driver, two MDO prob-
lems are used. The first is a trivial problem given as
an example of how to set a problem up for running the
driver. The second problem is a more costly structural
problem used to compare MATLAB’s optimization tool
box to that of the driver developed in this paper.

7.1 An Academic Example Problem
This is a small example on how to setup and run

the SNOPT driver for MATLAB. The problem was
taken from Optimization Concepts and Applications in
Engineering by Ashok D. Belegundu and Tirupathi R.
Chandrupatla1.

minimize f (x1,x2) = 0.01x2
1 + x2

2
x1,x2

subject to: 0 ≤









g1 = x1x2 −25
g2 = x1 −2

x1

x2









≤ ∞

This example is in the right form already so we can
start computing each needed variable from section 3.1.
Since there are two general constraints, g1 and g2, thus
m = 2. This problem has two variables, x1 and x2, so
n = 2. Next we have to compute the full Jacobian

A =

(∂g1(x1,x2)
∂x1

∂g1(x1,x2)
∂x2

∂g2(x1,x2)
∂x1

∂g2(x1,x2)
∂x2

)

=

(

x2 x1

1 0

)

Identifying three nonzero entries in the Jacobian
yields, ne = 3. g1 is the only nonlinear constraint so
nncon = 1. In the objective function, f (x1,x2), both
variables are nonlinear thus nnob j = 2. There are two

linear variables in the constraints therefore nn jac = 2.
As there is no linear objective vector c added to the
Jacobian, iob j = 0. There is no bias of the function
thus ob jadd = 0.0. Giving a name to the problem we
set prob = ‘Example’. Using the method from section
3.2; a(1) = 0 since the first nonzero element of A, x2,
is not constant, a(2) = 1 since that is the value of the
second nonzero element, and a(3) = 0 since again the
third nonzero entry, x1 is not constant, aT = (0,1,0).
Also, ha(1) = 1 because the first nonzero entry (x2) is
in the first row, ha(2) = 2 because the second nonzero
entry (1), and ha(3) = 1 because x1 is in the row 1,
haT = (1,2,1). Likewise, ka(1) = 1 since the first
nonzero entry in column 1 is the first nonzero entry in
the matrix, ka(2) = 3 since the third nonzero entry in the
matrix is the first nonzero entry in row 2, and ka(3) = 4
because ka(n + 1) = ne + 1 always, kaT = (1,3,4). The
first to entries of bl(n+m) are 0 since both x1 and x2 are
greater than or equal to 0. The third entry of bl is also
0 because g1’s slack is 0 (though we could rearrange
the equation to yield a slack of 25 and not include this
value in funcon.m). bl(4) = 2 because g2 is linear and
by rearranging we get

2 ≤ g2 = x2 ≤ ∞

so the slack of g2 is 2. The upper
bounds for all variables and slacks is ∞ thus
bu = [1e100,1e100,1e100,1e100] or any compara-
ble relatively high values. Next set the initial points for
the variables and slacks xs = [0,0,0,0] (As we do not
know anything about the slacks we use 0 as the starting
point, any other desired starting point is acceptable).
This problem doesn’t require any user variables so
ru = [] and none of the options are needed. The last step
is to create the MATLAB .m file which might look like:

% example.m an example file
% for running the SNOPT driver

m = 2;
n = 2;
ne = 3;
nncon = 1;
nnobj = 2;
nnjac = 2;
iobj = 0;
objadd = 0.0d+0;
prob = ’Example’;
a = [0,1,0];
ha = [1,2,1];

5
American Institute of Aeronautics and Astronautics

ka = [1,3,4];
bl = [0,0,0,2];
bu = [1e100,1e100,1e100,1e100];
xs = [0,0,0,0];
ru = [];

[hs,xs,pi,rc,inform,mincw,miniw,...
minrw,ns,ninf,sinf,obj]=...
snopt(m,n,ne,nncon,nnobj,nnjac,...
iobj,objadd,prob,a,ha, ka,bl,..
bu,xs,ru);

The next step is to create the funobj.m file. First
we calculate all the gradients of the objective function
f (x1,x2),

∂ f (x1,x2)
∂x1

= 0.02x1

and

∂ f (x1,x2)
∂x1

= 2x2

Then we are set to create the MATLAB code, which
might look like:

function [fobj,gobj,mode, grad]...
= funobj(x,mode,nstate,ru)
% funobj.m function file for
% SNOPT driver problem example.m

fobj = 0.01*x(1)ˆ2 + x(2)\ˆ 2;

gobj(1) = 0.02 * x(1);
gobj(2) = 2*x(2);

grad = 1;
% Suppling the gradients.

We continue the example by creating the funcon.m
file. In setting up the function the first thing we must
do is specify what constraints are nonlinear, in this case
just g1. Then we compute the Jacobian of the nonlinear
constraints,

A =
(

∂g1(x1,x2)
∂x1

∂g1(x1,x2)
∂x2

)

=
(

x2 x1
)

There are two non-constant terms in the Jacobian
therefore, gcon(1) = x2 and gcon(2) = x1. We are set to
create the MATLAB code, which might look like:

function [fcon, gcon, mode, grad]...
= funcon(x,mode,nstate,ru)

T T T

P=f(t)

A

B123

Figure 5. Cantilever beam with actuators.

% funcon.m function file for SNOPT
% driver problem example.m

fcon(1) = x(1)*x(2) - 25;

gcon(1,1) = x(2);
gcon(1,2) = x(1);

grad = 1;
% Suppling the gradients.

Running the example problem yields the following
results:

xs =

15.8114
1.5811

0
15.8114

obj =

5.0000

7.2 Control-Augmented Structure Problem
The control-augmented structure design problem

shown in Figure 5 was introduced by Sobieszczanski-
Sobieski et al.13. The problem comprises a total of 11
design variables and 43 states. The physical problem
consists of a cantilever beam subjected to static loads
along the beam and to a dynamic excitation force applied
at the free end. Two sets of actuators are placed at the
free end of the beam to control both the lateral and
rotational displacement.

The system analysis is comprised of two coupled
contributing analysis as shown in Figure 6. The struc-
tures subsystem, CAs consists of a finite element model
of the beam where the natural frequencies and modes
of the cantilever beam are computed. CAs requires, in

6
American Institute of Aeronautics and Astronautics

addition to the characteristics of the beam, the weight of
the control system as input. The weight of the control
system is calculated at the controls CA, CAc. The
weight of the control system is a function of the dynamic
displacements and rotations of the free end of the beam.
These dynamic displacements and rotations are func-
tions of the natural frequencies and modes obtained in
the structures CA, thus subjecting these CAs to coupling.

y

y

s

c

Structures

CA S

Controls

CA C

Figure 6. Dependency diagram of the Control-Augmented

Structure design problem.

The objective of the optimization is to minimize the
total weight of the system Wt , composed of the weight
of the beam Ws plus the weight of the control system Wc.
The minimization is subjected to seven constraints on
the static stresses, lateral and rotational displacements,
natural frequencies and dynamic lateral and rotational
displacements at the free end of the beam. The problem
is posed as:

min Wt = Ws +Wc

subject to

g1 = 1−
dl
dla

≥ 0,

g2 = 1−
dr
dra

≥ 0,

g3 =
ω1

ω1a

−1 ≥ 0,

g4 =
ω2

ω2a

−1 ≥ 0,

g5 = 1−
σ
σa

≥ 0,

g6 = 1−
ddl
ddla

≥ 0,

g7 = 1−
ddr
ddra

≥ 0,

where dl is the static lateral displacement, dr is
the static rotational displacement, ddl is the dynamic

lateral displacement, ddr is the dynamic rotational
displacement, ω1 is the first natural frequency, ω2 is the
second natural frequency, and σ is the static stress. The
subscript a stands for the allowed value. The optimum
for this problem is depicted in Table 1. The minimum
weight, W = 1493.6 lbs occurs where 6 design variables
are at their bounds.

Design Starting Optimum

Variable Design Design

b1 (in) 10.0 3.0

b2 (in) 10.0 3.0

b3 (in) 10.0 3.0

b4 (in) 10.0 3.0

b5 (in) 10.0 3.0

h1 (in) 10.0 13.85

h2 (in) 10.0 11.96

h3 (in) 10.0 9.78

h4 (in) 10.0 7.06

h5 (in) 10.0 3.75

c 0.01 0.06

Table 1. Starting and optimum designs for the Constrol-

Augmented Structure problem.

8 Testing Methodology

To test the SNOPT driver and underlying program
against the MATLAB optimization toolbox (version
2.0), we ran control-augmented structure problem on
similar computers using both optimizers.

Comparison between the driver proposed in this
paper and the MATLAB optimizer is done in two ways.
First, by plotting each design variable as a function of
iteration and by plotting the objective function versus
iteration for each optimizer.

7
American Institute of Aeronautics and Astronautics

0 10 20 30 40 50 60 70
0

5

10

15

b1

SNOPT
MATLAB 5

0 10 20 30 40 50 60 70
0

5

10

b2

0 10 20 30 40 50 60 70
0

5

10

15

b3

0 10 20 30 40 50 60 70
0

5

10

b4

0 10 20 30 40 50 60 70
0

5

10

15

b5

Iteration

Figure 7. Convergence of the bi design variables (width)

9 Results

In Figures 7 - 9 each design variable is plotted as
a function of iteration. These plots compare the con-
vergence of the SNOPT and MATLAB optimizers for
each variable. Figure 7 shows the 5 b design variables,
likewise Figure 8 shows the 5 h variables. Finally,
Figure 9 specifically shows the single c variable.

The convergence of the objective function of the two
optimizers is shown in Figure 10. The optimal value
of the function is W = 1493.6 lbs which is depicted as
1.4936 in the vertical axis of the plot.

0 10 20 30 40 50 60 70
0

5

10

15

h1

SNOPT
MATLAB 5

0 10 20 30 40 50 60 70
5

10

15

20

h2

0 10 20 30 40 50 60 70
0

5

10

15

h3

0 10 20 30 40 50 60 70
0

5

10

15

h4

0 10 20 30 40 50 60 70
5

10

15

20

h5

Iteration

Figure 8. Convergence of the hi design variables (height)

0 10 20 30 40 50 60 70
0

2

4

6

c

Iteration

SNOPT
MATLAB 5

Figure 9. Convergence of the c design variable

10 Discussion

The SNOPT optimizer used through the driver
developed in this paper does indeed converge faster in
this example than MATLAB’s optimization toolbox.
Figure 7 depicts all five variables converged faster when
run with the SNOPT optimizer. In Figure 8 three of the
variables converged fastest using MATLAB’s toolbox.
The last variable converged much faster with the SNOPT

8
American Institute of Aeronautics and Astronautics

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Iterations

O
bj

ec
tiv

e
F

un
ct

io
n

[1
00

0*
lb

s]

MATLAB
SNOPT

Figure 10. Objective Function Convergence of the SNOPT and

MATLAB Optimizers

program, as seen in Figure 9.

By looking at the convergence of the objective
function we can get a better quantitative look at the
convergence rate difference between the two methods. In
the first few iterations the MATLAB optimizer seemed
to converge faster, but then after about 7 iterations the
SNOPT optimizer converged considerably faster, with
exception to a few small bases changes in the 30 to 40
iterations range. However on the larger view, the SNOPT
optimizer converged to 99.9% of the minimum objective
function value in 29 iterations. It took MATLAB 69
iterations to reach the same criteria.

11 Conclusions

A driver which facilitates the use of the state of-the-
art optimization software, SNOPT, within a MATLAB
environment was developed in this research. The driver
was successfully tested and run using both academic
and real engineering problems. The convergence of the
optimization software was compared to MATLAB’s own
optimization toolbox. These tests showed that SNOPT
minimized the objective function faster and thus less
expensively. The MATLAB SNOPT capability devel-
oped in this research provides a new tool for engineers
or others who want to run optimization problems within
MATLAB.

Acknowledgments

This multidisciplinary research effort is supported in
part by the following grants and contracts; NSF grant
DMI98-12857 (NSF REU supplement), NASA grant
NAG1-2240 and CONACyT, Mexico.

References

1.- Belegundu, Ashok D., Chandrupatla, Tirupathi R.:
Optimization Concepts and Applications in Engineering,
Prentice Hall, 1999.
2.- Deitel, H.M., Deitel, P.J.: C How to Program, Pren-
tice Hall, 1994.
3.- Gill, Philip E., Murray, Walter, Saunders, Michael
A.: User’s Guide to SNOPT 5.3: A Fortran Package for
Large-Scale Nonlinear Programming, December 1998.
4.- Gu, Xiaoyu, Renaud, John E., Ashe, Leah M., Batill,
Stephen M., Budhiraja, Amarjit S., Krajewski, Lee J. :
Decision-Based Collaborative Optimization under Un-
certainty, DETC2000/DAC-14297 2000.
5.- Hanselman, Duane C., Littlefield, Bruce C.: Mas-
tering MATLAB 5: A Comprehensive Tutorial and Refer-
ence, Prentice Hall, 1997.
6.- Hillier, F.S., Lieberman, G.J.: Introduction to Oper-
ations Research, McGraw Hill, 2001.
7.- Kopka, Helmut, Daly, Patrick W.: A Guide to LATEX,
Addison-Wesley, third edition 1999.
8.- Mashaw, Bijan: Programming Byte by Byte: Struc-
tured FORTRAN 77, Little, Brown and Company, 1983.
9.- Mathworks, Inc. MATLAB: External Interface
Guide, 1992.
10.- Perez, V.M., Renaud, J.E., Gano, S.E., 2000, Con-
structing Variable Fidelity Response Surface Approxima-
tions on the Usable Feasible Region, Proceedings of the
8th AIAA/USAF/NASA/ISSMO Symposium on Multi-
dsciplinary Analysis & Optimization, AIAA 2000-4888,
Long Beach, CA, September 6-8.
11.- Rao, Singiresu S., Engineering Optimization, Wi-
ley, 1996.
12.- Reklaitis, G.V., Ravindran, A., Ragsdell, K.M., En-
gineering Optimization Methods and Applications, Wi-
ley, 1983.
13.- Sobieszczanski-Sobieski, J.; Bloebaum, C. L. ; Ha-
jela, P.1991: Sensitivity of Control-Augmented Struc-
ture Obtained by a System Decomposition Method. AIAA
Journal. Vol. 29, No. 2, February, pp. 264–270.

9
American Institute of Aeronautics and Astronautics

