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Abstract

Interest in the design and development of unmanned
aerial vehicles (UAVs) has increased dramatically in
the last decade. This research is part of a development
effort that involves the design of a buckle-wing UAV
that “morphs” in a way which facilitates variations in
wing loading, aspect ratio and wing section shapes. The
buckle-wing consists of two highly elastic beam-like
lifting surfaces joined at the outboard wing tips in either
a pinned or clamped configuration. The Buckle-Wing
UAV is capable of morphing between a separated
wing configuration designed for maneuverability, to
a single fixed wing configuration designed for long
range/high endurance. This morphing concept leads
to extra design challenges in the fact that one airfoil,
which must have high range/endurance capabilities,
must also separate in such a way that the two airfoils
give good maneuverability characteristics. This problem
is a multiobjective multilevel optimization process.
Because the optimization is multilevel the gradients
of the suboptimization are needed. Normally, these
gradients are computed via finite differencing. However,
this adds to the computational cost tremendously. This
paper describes and applies a method to find post-
optimal solution sensitivity to problem parameters or the
gradients at a much lower cost. This method is found
to save 75% of the computing time over using the finite
differencing scheme when applied to this problem.

∗Graduate Research Assistant, Student Member AIAA

Nomenclature

α Angle of attack
∆ Represents a perturbation in a variable
λi The Lagrange multiplier of the ith constraint
cd Drag coefficient
cl Lift coefficient
cp Pressure coefficient
F Objective Function
g j The jth constraint
l Lower bound
Pi The ith problem paramter
T Transpose
u Upper bound
wn The nth design weight
x Design variable vector
xi The ith design variable
∗ Optimum Quantity

1 Introduction

There has been a growing interest in the development
of unmanned arial vehicles (UAVs) for a variety of
missions. These include video and IR surveillance,
communication relay links, and the detection of biologi-
cal, chemical, or nuclear materials. These missions are
ideally suited to UAVs that are either remotely piloted or
autonomous.

Unmanned aerial vehicles (UAVs) are an ideal applica-
tion area for morphing aircraft structures. Existing fixed
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geometry UAV designs have generally been designed
for maximum flight endurance and range to provide
extended surveillance (i.e., single mission capability).
Future classes of UAVs with morphing airframe ge-
ometries are envisioned for achieving both endurance
and maneuverability in a single vehicle (i.e., multiple
mission profiles).

A typical mission that a multi-role UAV could perform
is depicted in Figure 1. This mission would include
takeoff, cruise to some desired location as efficiently
as possible, then it would encounter a flight situation
in which high maneuverability is essential, then an
efficient cruise back, and finally landing. In takeoff,
high-g maneuvers, and landing, high lift is desired with
much less emphasis on the level of drag. When cruising,
however, maximum range/endurance is desired so the
lift to drag ratio is important.

Takeoff

Mission

Cruise Cruise

High-g maneuvers
Landing

Figure 1. Typical mission scenario.

An adaptive airframe UAV concept that could accom-
modate such a versatile mission is a unique morphing
UAV referred to as the Buckle-Wing, that is being
developed at the University of Notre Dame. The wing
consists of two highly elastic beam-like lifting surfaces
joined at the outboard wing tips in either a pinned or
clamped configuration. The UAV is capable of morphing
between a separated wing configuration designed for
maneuverability to a single fixed wing configuration
designed for long range and/or high endurance.

The Buckle-Wing design has many advantages over
a traditional UAV design because the trade off for
maneuverability and range/endurance can be somewhat
decoupled. Allowing the performance of each category
to be greater than if a single design had them as com-
peting objectives. With this new capability comes new
design challenges.

The focus of the paper by Gano et. al.6 was to formulate
and solve the problem of finding the optimal shapes
for the airfoils such that the combined buckled and
conformed system are optimal. However, the problem
was a multilevel optimization problem that was very

computationally expensive. Furthermore, the objective
function of the system optimization depended on the
value from a sub optimization problem. This added
tremendously to the computational cost because the up-
per level optimization implored the efficient sequential
quadratic programming algorithm which requires gradi-
ents of the objective function and constraints. Gradients
of the optimization were not available so finite differ-
encing was required. In this paper the use of sensitivity
analysis based on the first order Kuhn-Tucker optimality
conditions for a more efficient means of calculating
the lower level optimization gradients with respect to
the upper level optimization variables is given and tested.

In the following sections the Buckle-Wing UAV is
described in greater detail, then a description of the
Buckle-Wing and conforming airfoil problems and
solutions are given. Followed next by a description of
the sensitivity analysis for the lower level optimization
problem. Two academic problems and the conforming
airfoil problem, the lower level optimization problem,
are then tested using this method and the results com-
pared to finite differencing.

2 Buckle-Wing UAV Description

The morphing-wing UAV concept that is being de-
veloped is the unique Buckle-Wing biplane illustrated
in Figures 2 and 3. This aircraft will be capable of
independently changing wing loading, aspect ratio, and
wing section shape while in flight.

Figure 2. Buckle-Wing in bi-plane configuration.

The Buckle-Wing consists of a lower lifting surface
that is relatively stiff and an upper lifting surface with
outboard attachments to the lower wing and the capa-
bility of large, elastic-buckling deformations in pinned,
clamped or various constrained sliding configurations.
A variety of morphing deformations can be induced
through controlled buckling of the elastic lift surfaces.
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Figure 3. Buckle-Wing from different perspectives in bi-plane

configuration.

The buckle-wing acts as a fused single wing in the ab-
sence of applied buckling loads and morphs into verti-
cally stacked wings when separated via application of
controlled buckling loads. A variety of actuators ex-
ist for supplying/controlling the buckling loads5. Out-
board actuators can apply axial loads and a central actu-
ator can apply a transverse load to separate the two lift-
ing surfaces via buckling deformation, thereby provid-
ing the biplane characteristics and decreased wing load-
ing. Actuators in the wing-rib-structure can be used to
attain smaller-scale deformations of the airfoil. The two
wing surfaces will join to form a single wing with a much
higher aspect ratio and increased wing loading in the ab-
sence of actuation forces.

3 Buckle-Wing and Conforming Airfoil Problem

The multiobjective optimization seeks to find an exterior
airfoil that maximizes high range and/or endurance per-
formance, that can be decomposed into two airfoils, that
when separated produce maximum high lift performance
for maneuverability. This is posed as a multiobjective
and multilevel optimization problem for determining the
buckle-wing UAVs conforming airfoils.

A flowchart of the optimization problem is shown
in Figure 4. The system level optimizer varies the
geometry of the fused airfoil (external geometry) and the
angle of attack for the fused deployment to achieve the
highest endurance (cl /cd maximum) for the fused shape,
and the most maneuverable (cl maximum) separated
configuration. For each iteration the performance of the
fused airfoil is computed and then the geometry is input
to a sublevel optimization problem that finds the optimal
separated airfoil geometries for maneuverability. The
sublevel optimization is solved for the current exterior
airfoil iterate. In this sub optimization problem the
angle of attack of the UAV, when in the separated

configuration, is also determined. The optimal value
of clmax is found and then passed back to the system
level. This is a multiobjective, multilevel optimization
formulation.

System Optimizer

Maximize:  w1
cl
cd

fused

Fused CFD Analysis

a  fused

 Exterior
geometry

cl
cd

fused

 Exterior
geometry  cl

split

*

Split CFD Analysis

a  split

 Cut
geometry

Conforming Optimizer

Maximize:  cl
split

 cl
split

+ w2 cl
split

*

Figure 4. Flowchart for the conforming airfoil optimization

framework.

The flowchart in Figure 4 doesn’t show the constraints
that are imposed on the system. For the system level
optimization there is a constraint on the lift coefficient
that must minimally be produced by the fused airfoil,
along with other possible aerodynamic constraints that
may be desired. Structural constraints must also be
enforced so that the airfoils don’t become too thin. In
the suboptimization problem, there are again general
aerodynamic constraints and structural constraints. A
minimal lift to drag ratio can also be used as a constraint.

The two airfoil configurations do compete because their
geometries must conform with one another. Weights, w1

and w2, are added to the objective function so that the
designer can control the importance of each objective.

The mathematical optimization statement can be posed
as,
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maximize : w1
cl
cd
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Where c∗l
∣

∣

split is the optimal value of the sub optimiza-
tion airfoil conforming problem,

maximize : cl |split
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
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


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∣

∣
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Aero(xsub)
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
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The design variables for the main optimization consist
of a parametrization of the fused geometry and its angle
of attack. Further design variables are introduced in
the sub problem and they consist of the airfoil parting
geometry and the angle of attack for the craft in the
buckled configuration.

The sub optimization problem was used instead of
letting the system level optimizer handle all of the
design variables because this insured a continuous
design space. If the system level optimizer could change
the cut and the fused shapes, then it would be possible
that the shape of the cut would in fact not fit within
the shape of the fused airfoil. If this occurred then
there would be no way to perform the CFD analysis
because the geometry would be not possible. It would be
possible to set constraints on these shapes but this would
be difficult to do using the methods of parametrization
used (basis functions) to express the shape of the
fused airfoil. If splines were used for describing both
geometries then this problem could be written with a
single level optimization, however there would need to
be many control points on the surface and thus many
design variables and therefore making the problem quite
computationally expensive. Other methods are possible
to rewrite this problem as a single level optimization but
make the design space very complex. So at this stage in
the research it has been decided to keep the coupling of
the two optimizations separate.

The methods used to parameterize the geometry of both
the fused shape and the cut play a large role in the com-
putational expense of this optimization and is discussed
in the next subsection. This is followed by the results
obtained from the conforming airfoil problem.

3.1 Geometric Parametrization

The way in which the geometry of the fused airfoil and
the cut are parameterized is important because it effects
the number of design variables in the system and the
shape possibilities. As the number of design variables
increases the optimization algorithm needs more data
especially in the form of gradients for each variable.
Because CFD is very expensive this information is quite
time consuming to calculate. On the other hand the
more values used to describe the shape of these two
geometries the greater the freedom the optimizer has
to find the best possible shape. Two different methods
have been used to describe the geometries. For the fused
airfoil, basis functions were used and for the cut, cubic
splines were used.

An approach used by Vanderplaats23, called basis
functions, was used to describe the fused airfoil shape.
The method uses a set of airfoil geometries as a basis
for creating new geometries. Design variables are used
for the various weights of each of the basis shapes.
Each of these weights are multiplied by their respective
airfoil and then these shapes are summed up to form
a new shape. Because all of the airfoils are smooth
the resultant shape is guaranteed to be smooth and to
have the appropriate characteristics, such as a rounded
leading edge and a sharp trailing edge. This approach
is preferred over using spline control points because it
requires less design variables to make new airfoil shapes.
However splines do have the capability of making any
possible shape where the basis functions may not.

The cut shape could be described in terms of basis shapes
as well. One approach would be to use a set of upper
surfaces and lower surfaces as the basis. However in the
test case presented in this paper spline control points are
used to vary the shape of the cut. This was done in order
to see what general shapes would be found for the cut
and not to bias it with a small set of possible basis shapes.

3.2 Conforming Airfoil Results

In the paper by Gano et. al.6 the conforming airfoil
problem or the sub-optimization problem was solved.
This is the problem that deal with finding the best cut
through a given exterior airfoil shape to create two
airfoils that when they were separated produced the most
lift. The main results are shown graphically in Figure 5.
In the top of the figure the fused airfoil is shown with
a cut that was parameterized by 3 control points and 3
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fixed nodes all fitted with a cubic spline curve. The three
fixed nodes included one at the leading edge, one at the
trailing edge and one near the trailing edge to insure that
each split airfoil had a sharp trailing edge. In the center
of Figure 5 the general shape of the split airfoils are
given for the starting point and optimized shape is shown
in the bottom of the Figure. Notice that the optimal cut
makes a thin of a slice along the upper surface as was
allowed by the variable bounds. The results in this paper
agree well with the findings in that paper but address the
issue on how to get the sensitivity of the lift produced by
this system to the exterior airfoil that is sent down from
the system level optimizer.

Fused Geometry Spline Cut Line 

Split Geometry 

Optimal Split Geometry 

Figure 5. Conforming airfoil optimization geometries.

4 Post-Optimal Solution Sensitivity
to Problem Parameters

The sensitivity of an optimum design to problem
parameters was studied in the early 1980’s. In work by
Sobieszczanski-Sobieski et. al.20 this sensitivity was
derived exactly but was still expensive to compute. In
later work by Barthelemy and Sobieszczanski-Sobieski4

another method was derived to yield this sensitivity
information with much less computational expense. This
result is described briefly in this section.

Starting with the optimization problem,

maximize : F(x,Pi)
x
subject to :

g j(x,Pi) ≤ 0

where the vector x is the design variables, Pi are the prob-
lem parameters that are not changed by the optimization
process, and g j are the j = 1 . . .N constraints. Using the
symbol ∗ to denote quantities at the optimum,

F∗ = F∗(x∗(Pi),Pi) (1)

g∗j = g∗j(x
∗(Pi),Pi) = 0. (2)

Here we are only considering the constraints which are
active. Using the chain rule we find the total sensitivity
derivative of the optimum with respect to the problem
parameters to be,

dF∗

dPi
=

∂F∗

∂Pi
+

(

∂F∗

∂x

)T ∂x∗

∂Pi
(3)

Therefore once the optimum sensitivity derivatives of
the design variables, ∂x∗

∂Pi
, are computed Equation 3

yields the optimum sensitivity derivative of the objective
function. However, these derivatives of the design
variables are expensive to calculate so it is desirable to
avoid computing them.

The Kuhn-Tucker conditions at the optimum point is de-
fined as,

∂F∗

∂x
+

∂g∗j
∂x

λ∗
j = 0, (4)

where
∂g∗j
∂x is the jacobian and λ∗ is the vector of Lagrange

multipliers. If the parameters Pi are perturbed then at the
new optimal point the original active constraints remain
active. Therefore,

dg∗j
dPi

=
∂g∗j
∂Pi

+

(∂g∗j
∂x

)T ∂x∗

∂Pi
= 0. (5)
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Multiplying Equation 4 by ∂x∗

∂Pi
and substituting Equation

5 gives,

(

∂F∗

∂x

)T ∂x∗

∂Pi
= (λ∗

j)
T

∂g∗j
∂Pi

. (6)

Substituting this into Equation 3 gives the final result,

dF∗

dPi
=

∂F∗

∂Pi
+(λ∗

j)
T

∂g∗j
∂Pi

. (7)

This equation is very efficient way to compute the
sensitivity of the optimal objective function value
with respect the the problem parameters. The La-
grange Multipliers are normally obtained through the
optimization process, though if they are not can be
easily computed. To compute Equation 7 one full
optimization need to be computed then one function
evaluation for each parameter. Compared to having to
compute multiple full optimization runs this requires
considerably less function evaluations. This result is
put to use for three different problems in the next section.

5 Numerical Applications

A comparison of the sensitivity of the optimal solution
to problem parameters found from finite differences
and from the post-optimality method described in
the previous section is given here for three different
examples. The first two examples are simple cases and
the third is the conforming airfoil problem.

5.1 Academic Example 1

The first problem used in comparing how the optimal so-
lution varies when problem parameters are changed is,

maximize : F = x1 + x2

x
subject to :

1
x1

+
1
x2

+P ≤ 0

x1,x2 > 0

Table 1. Academic Example 1: Finite Difference Results

P F∗ x∗1 x∗2

-2.00 2.0000 1.0000 1.0000

-1.99 2.0101 1.0050 1.0050

Table 2. Academic Example 1: Post-Optimality Sensitivity Re-

sults

P F∗ x∗1 x∗2 g λ

-2.00 2.0000 1.0000 1.0000 0.00 1.0

-1.99 2.0000 1.0000 1.0000 0.01 -

Where P is the problem parameter, x1 and x2 are the
design variables. In each case the starting design point
was x1 = 2 and x2 = 2

3 . The parameter P was taken to be
-2.

Using finite differencing, the problem was optimized
for the original value of P = −2 and then re-optimized
using a perturbed value of P = −1.99. The results from
these two optimizations are listed in Table 1, where F∗

is the optimal objective function value, x∗1 and x∗2 are the
final design points.

From these results a forward finite difference yields a pa-
rameter sensitivity of,

dF∗

dP
≈

F∗(P = −1.99)−F∗(P = −2)

−1.99− (−2)
= 1.01 (8)

Using the post-optimality sensitivity method the problem
was optimized for the original value of the parameter as
in the finite difference method. Then using the optimal
design point found the objective function and the
constraint were evaluated with a new parameter value
of P = −1.99. No second optimization was preformed.
The results obtained are presented in Table 2, where
g is the value of the constraint and λ is the lagrange
multiplier of the constraint.

From these results and using a forward difference to ap-
proximate the partial derivatives, the parameter sensitiv-
ity is,
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dF∗

dP
=

∂ f
∂P

+λ
∂g
∂P

≈
2−2

−1.99− (−2)
+(1)

0.01−0
−1.99− (−2)

= 1. (9)

Because of the symmetry and size of this problem the
parameter sensitivity can be found analytically to have a
value of ∂ f ∗

∂P = 1. So in this example the finite difference
method was more expensive to compute and it gave
results that were inferior to that of the post-optimality
sensitivity method. This was also seen in studies by
Sobieszczanski-Sobieski21 et. al. in a similar study
of a control-augmented structure problem. Also the
sensitivity values of both methods converge to the same
value as smaller step sizes of the parameter are used.

5.2 Academic Example 2

The second problem adds some complexity by including
a direct influence of the parameter to the objective func-
tion. The problem is,

maximize : F = x1 −Px2

x
subject to :

1
x1

+
1
x2

+P ≤ 0

x1,x2 > 0

Where P is the problem parameter, x1 and x2 are the
design variables. In each case the starting design point
was x1 = 2 and x2 = 2

3 . The parameter P was taken to be
-2.

Using finite differencing, like in the first example,
the problem was optimized for the original value of
P = −2 and then re-optimized using a perturbed value
of P = −1.99. The results from these two optimizations
are listed in Table 3.

Table 3. Academic Example 2: Finite Difference Results

P F∗ x∗1 x∗2

-2.00 2.9142 1.2071 0.8535

-1.99 2.9203 1.2114 0.8587

Table 4. Academic Example 2: Post-Optimality Sensitivity Re-

sults

P F∗ x∗1 x∗2 g λ

-2.00 2.9142 1.2071 0.8535 0.00 1.4566

-1.99 2.9057 1.2071 0.8535 0.01 -

From these values a forward finite difference yields a pa-
rameter sensitivity of,

dF∗

dP
≈ 0.60614 (10)

Next the post-optimality sensitivity method was used.
The problem was optimized for the original value of
the parameter. Then using the optimal design point
found the objective function and the constraint were
evaluated with a new parameter value of P = −1.99. No
second optimization was needed. The results obtained
are presented in Table 4.

From these results the parameter sensitivity is found,

dF∗

dP
≈ 0.60307 (11)

The two methods both predicted sensitivities that were
very similar. Since these functions are easily evaluated,
in the limit as the perturbation of the parameter de-
creased both methods predicted the same sensitivity.

The good agreement in results of both of these simple
example problems show that the post-optimality sensi-
tivity method, while requiring much less computational
time, predicts the parameter sensitivity well. In the next
example the much more expensive design problem, the
conforming airfoil, is presented.
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5.3 Conforming Airfoil Problem

Now the sub optimization or conforming airfoil problem
is tested using again, both finite differencing and post
optimality methods. The problem starts with a given
exterior airfoil shape, which in the full buckle-wing
problem would be governed by the system level opti-
mizer and is given in terms of weights of basis airfoil
shapes. Therefore the parameters of interest here are the
basis shape weights, because the system level optimizer
needs gradients with respect to these variables. The basis
function weights for this problem, P1,P2,P3 correspond
to the airfoils E-387, NACA 64A010, and the S2055
respectively. The starting values for the weights are
p1 = 1.0, p2 = 0.0, and p3 = 0.0. Therefore we are just
using the E-387 as the airfoil. The other weights are
perturbed to find the sensitivities in both methods.

The design variables, x, for the problem include three
vertical displacements of the cubic spline nodal points
that divide the exterior airfoil into two smaller airfoils.
The vertical displacements are referenced from the
camber line.

The optimization problem for this specific example is to
maximize the lift generated by the separated conform-
ing airfoils, subject to a minimum lift to drag ratio and
bounds on the design variables for structural reasons.
Mathematically this is written as,

minimize : F = −cl |split

x
subject to :








20
−0.0267
−0.0299
−0.0148









≤









cl/cd

x1

x2

x3









≤









∞
0.0267
0.0299
0.0148









.

The angle of attack is held at a constant α = 3o to de-
crease the computational cost of each optimization run.
The airfoils were separated by a fixed value of 50% of
the chord. The starting point for each design point was 0.

The Reynolds number was one and a half million, the
Mach number was 0.35. An unstructured grid was used
that consisted of about 60,000 elements which extended
to 30 times the chord in each direction. The wall spacing
on the airfoil surfaces was 0.0001. The grid around the
airfoils can be seen in Figure 6 for the starting cut. The
turbulence was modelled with the k-ω model.

The FUN2D (Fully Unstructured Navier-Stokes in 2D)
code was used for the CFD analysis. The code was

X
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Figure 6. Unstructured mesh around the separated airfoils.

developed by NASA at the Langley Research Center1,3.
The CFD code was run for each analysis until the RMS
residue for an iteration was less than 1 × 10−11. The
convergence history for both the RMS residue and the
lift coefficient for the initial design point are shown
in Figures 7 and 8 respectively. These plots show
that the lift coefficient has indeed reached it’s steady
state value. For comparison purposes the lift coeffi-
cient for the fused E-387 airfoil was 0.74708 and for the
starting split configuration the lift coefficient was 1.1187.
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Figure 7. RMS residue convergence

The optimization was performed using MATLAB’s
optimization toolbox’s fmincon, as was the two other
example problems. The optimizer uses a Sequential
Quadratic Programming (SQP) method. In this method,
a Quadratic Programming (QP) subproblem is solved
at each iteration. An estimate of the Hessian of the
Lagrangian is updated at each iteration using the BFGS
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Figure 8. Lift coefficient convergence

Table 5. Conforming Airfoil Problem: Finite Difference Results

run1 ∆P1 ∆P2 ∆P3

F∗ -1.19156 -1.19859 -1.19286 -1.19458

x∗1 0.02026 0.01595 0.01876 0.02479

x∗2 0.02986 0.03016 0.03020 0.03013

x∗3 0.01477 0.01492 0.01497 0.01495

CPU 2.33E4 5.50E4 3.61E4 1.63E4

formula22.

5.3.1 Conforming Airfoil Sensitivity to

External Shape Results

For the finite difference scheme the full optimization
was run 4 times. One run was with no perturbation in
the parameters and the other three runs each parameter
was successively perturbed by a value of ∆P = 0.01.
The results are shown in Table 5, where run1 is the
optimization with no perturbation and the ∆Pi columns
are the results when the ith parameter was changed.
Also the computational time in seconds are given for
each run. The objective function values are the negative
of the lift coefficient because of the transformation from
a maximization to a minimization problem.

The total time to make the required analysis for finite dif-
ferencing was 36.3 hours. The resulting sensitivities of
the optimal objective function with respect to the exterior
geometry parameters are,

Table 6. Conforming Airfoil Problem: Post-Optimality Sensitivity

Results

run1 ∆P1 ∆P2 ∆P3

F∗ -1.19156 -1.19730 -1.19156 -1.19489

x∗1 0.02026 0.02026 0.02026 0.02026

x∗2 0.02986 0.02986 0.02986 0.02986

x∗3 0.01477 0.01477 0.01477 0.01477

g∗2 0.00000 -0.00030 -0.00035 -0.00027

g∗3 0.00000 -0.00015 -0.00020 -0.00018

λ∗
2 0.77649 - - -

λ∗
3 2.95550 - - -

CPU 2.33E4 1.76E3 1.78E3 1.68E3

dF∗

dPi
≈





−0.7022
−0.1298
−0.3019



 . (12)

For the post optimality scheme the full optimization was
run only once. Then using the optimal design variable
values one system analysis was performed while each
of the three parameters were perturbed by the same
increment as before. The resulting values are shown
in Table 6, where run1 is the optimization with no
perturbation and the ∆Pi columns are the results when
the ith parameter is changed. The constraint values for
the upper bounds on x2 and x3 are given as g2 and g3

along with there corresponding Lagrange multipliers
λ2 and λ3. These values are given because they are the
only constraints that have non-negative multipliers. The
computational time in seconds are again given for each
run.

The total time to make the required analysis for the post
optimality method was 7.93 hours. This is a significant
savings over the previous method. The resulting sensi-
tivities of the optimal objective function with respect to
the exterior geometry parameters are,

dF∗

dPi
≈





−0.6403
−0.0871
−0.40725



 . (13)
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The sensitivities found range from a 9% to a 35%
difference from that of the finite differencing method.
Since neither method gives the exact sensitivity we
can not say which is better just that they are within a
certain range of one another. The differences here in the
sensitivities are significant but in view of the time sav-
ings the post optimality method clearly has an advantage.

Mach contours around the optimal shape can be seen in
Figure 10 and the resulting pressure distribution about
both the upper and lower airfoils is shown in Figure 9.
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Figure 9. Pressure distribution along both airfoil surfaces of op-

timal design.
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Figure 10. Mach contours and stream lines around optimal de-

sign.

6 Conclusions and Future Work

In the conforming airfoil problem the sensitivities from
finite difference and post optimality methods were found
to be somewhat different however both had the same
sign and were within 35%. This difference was also seen
in work by Sobieszczanski-Sobieski21 et. al., in fact
they found even worse agreement. Computational time
however, set the two methods apart. The post optimality
method took less than a fourth of the time that was
needed in order to compute the same sensitivities using
finite differencing. Therefore based on these results
and similar findings in the simple examples the post
optimality approach is much better especially when it
will be used as a suboptimization problem and will have
to be run several times to complete the full Buckle-wing
problem.

Future work on this topic would be to change the
parameter perturbation values to see how the difference
between the two methods changes. Then to apply
the post optimality method into the full Buckle-wing
problem.
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